COST Action ES0803
Open Access
Issue
J. Space Weather Space Clim.
Volume 3, 2013
COST Action ES0803
Article Number A18
Number of page(s) 45
DOI https://doi.org/10.1051/swsc/2013039
Published online 30 April 2013
  • Alexander, D., Space Sci. Rev., 123, 81, 2006. [NASA ADS] [CrossRef]
  • Aly, J.J., On some properties of force-free magnetic fields in infinte regions of space, Astrophys. J., 283, 349–362, 1984. [NASA ADS] [CrossRef]
  • Amari, T., J.F. Luciani, J.J. Aly, and M. Tagger, Very fast opening of a three-dimensional twisted magnetic flux tube, Astrophys. J., 466, L39, 1996. [NASA ADS] [CrossRef]
  • Amari, T., J.F. Luciani, Z. Mikić, and J.A. Linker, A twisted flux rope model for coronal mass ejections and two-ribbon flares, Astrophys. J., 529, L49–L52, 2000. [NASA ADS] [CrossRef] [PubMed]
  • Amari, T., J.F. Luciani, J.J. Aly, Z. Mikić, and J.A. Linker, Coronal mass ejection: initiation, magnetic helicity, and flux ropes. I. Boundary motion-driven evolution, Astrophys. J., 585, 1073–1086, 2003. [NASA ADS] [CrossRef]
  • Amari, T., J.J. Aly, Z. Mikic, and J. Linker, Coronal mass ejection initiation and complex topology configurations in the flux cancellation and breakout models, Astrophys. J., 671, L189–L192, 2007. [CrossRef]
  • Amari, T., J.-J. Aly, Z. Mikic, and J. Linker, Coronal mass ejection initiation: on the nature of the flux cancellation model, Astrophys. J., 717, L26–L30, 2010. [NASA ADS] [CrossRef]
  • Amari, T., J.-J. Aly, J.-F. Luciani, Z. Mikic, and J. Linker, Coronal mass ejection initiation by converging photospheric flows: toward a realistic model, Astrophys. J., 742, L27, 2011. [NASA ADS] [CrossRef]
  • Amblard, P.-O., S. Moussaoui, T. Dudok de Wit, J. Aboudarham, M. Kretzschmar, J. Lilensten, and F. Auchère, The EUV Sun as the superposition of elementary Suns, A&A, 487, L13–L16, 2008. [NASA ADS] [CrossRef] [EDP Sciences]
  • Antiochos, S., C. DeVore, and J. Klimchuk, A model for solar coronal mass ejections, Astrophys. J., 510, 485–493, 1999. [NASA ADS] [CrossRef]
  • Antiochos, S.K., J.T. Karpen, E.E. DeLuca, L. Golub, and P. Hamilton, Astrophys. J., 590, 547, 2003. [NASA ADS] [CrossRef]
  • Archontis, V., F. Moreno-Insertis, K. Galsgaard, and A.W. Hood, The three-dimensional interaction between emerging magnetic flux and a large-scale coronal field: reconnection, current sheets, and jets, Astrophys. J., 635, 1299–1318, 2005. [NASA ADS] [CrossRef]
  • Arge, C.N., and V.J. Pizzo, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates, J. Geophys. Res., 105, 10465–10480, 2000. [NASA ADS] [CrossRef]
  • Arregui, I., R. Oliver, and J.L. Ballester, LRSP, 9, 2, 2012.
  • Aulanier, G., T. Török, P. Démoulin, and E.E. DeLuca, Formation of torus-unstable flux ropes and electric currents in erupting sigmoids, Astrophys. J., 708, 314–333, 2010. [NASA ADS] [CrossRef]
  • Battarbee, M., T. Laitinen, and R. Vainio, Heavy-ion acceleration and self-generated waves in coronal shocks, A&A, 535, A34, 2011. [NASA ADS] [CrossRef] [EDP Sciences]
  • Bemporad, A., Astrophys. J., 701, 298, 2009. [NASA ADS] [CrossRef]
  • Bemporad, A., Prominence 3D reconstruction in the STEREO era: a review, J. Atmos. Sol. Terr. Phys., 73 (10), 1117–1128, 2011. [NASA ADS] [CrossRef]
  • Bemporad, A., and S. Mancuso, First complete determination of plasma physical parameters across a coronal mass ejection-driven shock, Astrophys. J., 720, 130–143, 2010. [NASA ADS] [CrossRef]
  • Bemporad, A., F.P. Zuccarello, C. Jacobs, et al., Study of multiple coronal mass ejections at solar minimum conditions, Sol. Phys., 281, 223–236, 2012.
  • BenMoussa, A., A. Soltani, U. Schühle, K. Haenen, Y.M. Chong, et al., Recent developments of wide-bandgap semiconductor based UV sensors, Diamond Relat. Mater., 18(5–8), 860–864, Proceedings of Diamond 2008, the 19th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide, 2009. [CrossRef]
  • Berger, M.A. and G.B. Field, The topological properties of magnetic helicity, J. Fluid Mech., 147, 133, 1984. [NASA ADS] [CrossRef]
  • Berger, T.E., B. de Pontieu, L. Fletcher, et al., Sol. Phys., 190, 409, 1999. [NASA ADS] [CrossRef]
  • Berger, T.E., R.A. Shine, G.L. Slater, et al., Astrophys. J., 676, L89, 2008. [NASA ADS] [CrossRef]
  • Berger, T., P. Testa, A. Hillier, et al., Nature, 472, 197, 2011. [NASA ADS] [CrossRef] [PubMed]
  • Bethge, C., C. Beck, H. Peter, and A. Lagg, A&A, 537, A130, 2012. [NASA ADS] [CrossRef] [EDP Sciences]
  • Billings, D.E., A Guide to the Solar Corona, Academic Press, NY, London, 1966.
  • Bougeret, J.L., K. Goetz, M.L. Kaiser, S.D. Bale, P.J. Kellogg, M. Maksimovic, N. Monge, S.J. Monson, P.L. Astier, and S. Davy, S/WAVES: The radio and plasma wave investigation on the STEREO mission, SSRv, 136, 487–528, 2008.
  • Brooks, D.H., H.P. Warren, and P.R. Young, Astrophys. J., 730, 85, 2011. [NASA ADS] [CrossRef]
  • Brueckner, G.E., R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, et al., The large angle spectroscopic coronagraph (LASCO), Sol. Phys., 162, 357–402, 1995. [NASA ADS] [CrossRef]
  • Burlaga, L., E. Sittler, F. Mariani, and R. Schwenn, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations, JGR, 86, 6673–6684, 1981. [NASA ADS] [CrossRef]
  • Cane, H.V., I.G. Richardson, and T.T. von Rosenvinge, A study of solar energetic particle events of 1997–2006: their composition and associations, J. Geophys. Res., 115, A08101, 2010. [NASA ADS] [CrossRef]
  • Cargill, P.J., Astrophys. J., 422, 381, 1994. [NASA ADS] [CrossRef]
  • Cargill, P.J., Sol. Phys., 221, 135, 2004. [NASA ADS] [CrossRef]
  • Cessateur, G., T. Dudok de Wit, M. Kretzschmar, J. Lilensten, J.-F. Hochedez, and M. Snow, Monitoring the solar UV irradiance spectrum from the observation of a few passbands, A&A, 528, A68, 2011. [NASA ADS] [CrossRef] [EDP Sciences]
  • Cessateur, G., J. Lilensten, T. Dudok de Wit, A. BenMoussa, and M. Kretzschmar, New observation strategies for the solar UV spectral irradiance, J. Space Weather Space Clim., 2, A16, 2012. [CrossRef] [EDP Sciences]
  • Chae, J., Observational determination of the rate of magnetic helicity transport through the solar surface via the horizontal motion of the field line footpoints, Astrophys. J., 560, L95, 2001. [NASA ADS] [CrossRef]
  • Chae, J., Adv. Space Res., 39, 1700, 2007. [NASA ADS] [CrossRef]
  • Chae, J., Astrophys. J., 714, 618, 2010. [NASA ADS] [CrossRef]
  • Chae, J., Y. Moon, D.M. Rust, H. Wang, and P.R. Goode, Magnetic helicity pumping by twisted flux tube expansion, J. Kor. Astron. Soc., 36, 33, 2003. [NASA ADS] [CrossRef]
  • Chamberlin, P.C., T.N. Woods, and F.G. Eparvier, Space Weather, 6, 5001, 2008. [CrossRef]
  • Charbonneau, P., Dynamo models of the solar cycle, Living Rev. Sol. Phys., 7, 3, http://www.livingreviews.org/lrsp-2010-3, 2010.
  • Chen, J., Effects of toroidal forces in current loops embedded in a background plasma, Astrophys. J., 338, 453–470, 1989. [NASA ADS] [CrossRef]
  • Chen, P.F., Coronal mass ejections: models and their observational basis, Living Rev. Sol. Phys., 8, 2011.
  • Chen, J., and J. Krall, J. Geophys. Res., 108, 1410, 2003. [CrossRef]
  • Chen, P., and K. Shibata, An emerging flux trigger mechanism for coronal mass ejections, Astrophys. J., 545, 524–531, 2000. [NASA ADS] [CrossRef]
  • Chen, J., R.A. Howard, G.E. Brueckner, R. Santoro, J. Krall, S.E. Paswaters, O.C. St. Cyr, R. Schwenn, P. Lamy, and G.M. Simnett, Coronal mass evidence of an erupting magnetic flux rope: LASCO coronal mass ejection of 1997 April 13, Astrophys. J., 490, L191, 1997. [NASA ADS] [CrossRef]
  • Cheng, X., J. Zhang, O. Olmedo, A. Vourlidas, M.D. Ding, and Y. Liu, Investigation of the formation and separation of an extreme-ultraviolet wave from the expansion of a coronal mass ejection, Astrophys. J., 745, L5, 2012. [NASA ADS] [CrossRef]
  • Chifor, C., H.E. Mason, D. Tripathi, H. Isobe, and A. Asai, A&A, 458, 965, 2006. [NASA ADS] [CrossRef] [EDP Sciences]
  • Cirigliano, D., J.-C. Vial, and M. Rovira, Sol. Phys., 223, 95, 2004. [NASA ADS] [CrossRef]
  • Cirtain, J.W., G. Del Zanna, E.E. DeLuca, et al., Astrophys. J., 655, 598, 2007. [NASA ADS] [CrossRef]
  • Cohen, O., I.V. Sokolov, I.I. Roussev, and T.I. Gombosi, Validation of a synoptic solar wind model, J. Geophys. Res. (Space Phys.), 113, A03104, 2008. [CrossRef]
  • Connors, M., C.T. Russell, and V. Angelopoulos, Magnetic flux transfer in the 5 April 2010 Galaxy 15 substorm: an unprecedented observation, AnGeo, 29, 619–622, 2011.
  • Cremades, H., and V. Bothmer, On the three-dimensional configuration of coronal mass ejections, A&A, 422, 307–322, 2004. [NASA ADS] [CrossRef] [EDP Sciences]
  • Criscuoli, S., D. Del Moro, F. Giannattasio, et al., A&A, 546, A26, 2012. [NASA ADS] [CrossRef] [EDP Sciences]
  • Dammasch, I.E., W. Curdt, B.N. Dwivedi, and S. Parenti, Ann. Geophys., 26, 2955, 2008. [NASA ADS] [CrossRef]
  • Davis, C.J., C.A. de Koning, J.A. Davies, D. Biesecker, G. Millward, et al., A comparison of space weather analysis techniques used to predict the arrival of the Earth-directed CME and its shockwave launched on 8 April 2010, SpWea, 9, CiteID S01005, 2011.
  • de Koning, C.A., and V.J. Pizzo, Polarimetric localization: a new tool for calculating the CME speed and direction of propagation in near-real time, SpWea, 9, CiteID S03001, 2011.
  • Del Moro, D., S. Giordano, and F. Berrilli, A&A, 472, 599, 2007. [NASA ADS] [CrossRef] [EDP Sciences]
  • Del Zanna, G., A&A, 481, L49, 2008. [NASA ADS] [CrossRef] [EDP Sciences]
  • Del Zanna, G., and H.E. Mason, A&A, 406, 1089, 2003. [NASA ADS] [CrossRef] [EDP Sciences]
  • Demoulin, P., and E. Pariat, Modelling and observations of photospheric magnetic helicity, Adv. Space Res., 43, 1013, 2009. [NASA ADS] [CrossRef]
  • Dere, K.P., A&A, 491, 561, 2008. [NASA ADS] [CrossRef] [EDP Sciences]
  • Dere, K.P., A&A, 497, 287, 2009. [NASA ADS] [CrossRef] [EDP Sciences]
  • Dere, K.P., G.E. Brueckner, R.A. Howard, D.J. Michels, and J.P. Delaboudiniere, Astrophys. J., 516, 465, 1999. [NASA ADS] [CrossRef]
  • Dere, K.P., D. Wang, and R. Howard, Three-dimensional structure of coronal mass ejections from LASCO polarization measurements, Astrophys. J., 620, L119–L122, 2005. [NASA ADS] [CrossRef]
  • Ding, J.Y., and Y.Q. Hu, Astrophys. J., 674, 554, 2008. [CrossRef]
  • Doschek, G.A., J.T. Mariska, H.P. Warren, et al., PASJ, 59, 707, 2007.
  • Dubey, G., B. van der Holst, and S. Poedts, Initiation of CMEs by magnetic flux emergence, A&A, 27, 159–166, 2006.
  • Dudok de Wit, T., J. Lilensten, J. Aboudarham, P.-O. Amblard, and M. Kretzschmar, Retrieving the solar EUV spectrum from a reduced set of spectral lines, Ann. Geophys., 23, 3055–3069, 2005. [NASA ADS] [CrossRef]
  • Dudok de Wit, T., M. Kretzschmar, J. Lilensten, and T. Woods, Finding the best proxies for the solar UV irradiance, Geophys. Res. Lett., 36, 10107, 2009. [NASA ADS] [CrossRef]
  • Engvold, O., Sol. Phys., 70, 315, 1981. [NASA ADS] [CrossRef]
  • Ermolli, I., K. Matthes, T. Dudok de Wit, et al., Atmos. Chem. Phys. Discuss., 12, 24557, 2012. [NASA ADS] [CrossRef]
  • Eyles, C.J., R.A. Harrison, C.J. Davis, N.R. Waltham, B.M. Shaughnessy, et al., The heliospheric imagers onboard the STEREO mission, Sol. Phys., 254, 387–445, 2009. [CrossRef]
  • Fan, Y., Magnetic fields in the solar convection zone, Living Rev. Sol. Phys., 6, 4, http://www.livingreviews.org/lrsp-2009-4 , 2009.
  • Fan, Y., and S.E. Gibson, Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes, Astrophys. J., 609, 1123–1133, 2004. [NASA ADS] [CrossRef]
  • Fan, Y., and S.E. Gibson, Onset of coronal mass ejections due to loss of confinement of coronal flux ropes, Astrophys. J., 668, 1232–1245, 2007. [NASA ADS] [CrossRef]
  • Feynman, J., and S.F. Martin, The initiation of coronal mass ejections by newly emerging magnetic flux, J. Geophys. Res., 100, 3355–3367, 1995. [NASA ADS] [CrossRef]
  • Fontenla, J.M., J. Harder, W. Livingston, M. Snow, and T. Woods, High-resolution solar spectral irradiance from extreme ultraviolet to far infrared, J. Geophys. Res. (Atmos.), 116, 20108, 2011. [NASA ADS] [CrossRef]
  • Forbes, T.G., J. Geophys. Res., 105, 23153, 2000. [NASA ADS] [CrossRef]
  • Forbes, T., Models of coronal mass ejections and flares, edited by C.J. Schrijver, and G.L. Siscoe, Cambridge University Press, p. 159, 2010.
  • Forbes, T.G., and P.A. Isenberg, A catastrophe mechanism for coronal mass ejections, Astrophys. J., 373, 294–307, 1991. [NASA ADS] [CrossRef]
  • Forbes, T.G., and E.R. Priest, Photospheric magnetic field evolution and eruptive flares, Astrophys. J., 446, 377, 1995. [NASA ADS] [CrossRef]
  • Forbes, T.G., J.A. Linker, J. Chen, et al., CME theory and models, Space Sci. Rev., 123, 251–302, 2006. [NASA ADS] [CrossRef]
  • Fröhlich, C., Total solar irradiance: what have we learned from the last three cycles and the recent minimum?, Space Sci. Rev., 366, 2011.
  • Galsgaard, K., V. Archontis, F. Moreno-Insertis, and A.W. Hood, The effect of the relative orientation between the coronal field and new emerging flux. I. Global properties, Astrophys. J., 666, 516–531, 2007. [NASA ADS] [CrossRef]
  • Gilbert, H.R., D. Alexander, and R. Liu, Sol. Phys., 245, 287, 2007. [NASA ADS] [CrossRef]
  • Gissot, S.F., J. Hochedez, P. Chainais, and J. Antoine, Sol. Phys., 252, 397, 2008. [NASA ADS] [CrossRef]
  • Golub, L., E. Deluca, G. Austin, et al., Sol. Phys., 243, 63, 2007. [NASA ADS] [CrossRef]
  • Gopalswamy, N., A. Lara, R.P. Lepping, et al., Geophys. Res. Lett., 27, 145, 2000. [NASA ADS] [CrossRef]
  • Gopalswamy, N., A. Lara, S. Yashiro, M.L. Kaiser, and R.A. Howard, J. Geophys. Res., 106, 29207, 2001. [NASA ADS] [CrossRef]
  • Gopalswamy, N., M. Shimojo, W. Lu, S. Yashiro, K. Shibasaki, and R.A. Howard, Astrophys. J., 586, 562, 2003. [NASA ADS] [CrossRef]
  • Gopalswamy, N., H. Xie, S. Akiyama, P. Mäkelä, S. Yashiro, and I. Usoskin, Heliocentric distance of CMEs at the time of energetic particle release: revisiting the ground level enhancement events of solar cycle 23, in: Proc. Internat. Cosmic Ray Conf. 10, 157, 2011.
  • Gopalswamy, N., N. Nitta, S. Akiyama, P. Mäkelä, and S. Yashiro, Coronal magnetic field measurement from EUV images made by the solar dynamics observatory, Astrophys. J., 744, 72, 2012. [NASA ADS] [CrossRef]
  • Goryaev, F.F., S. Parenti, A.M. Urnov, et al., A&A, 523, A44, 2010. [NASA ADS] [CrossRef] [EDP Sciences]
  • Gosling, J.T., E. Hildner, R.M. MacQueen, et al., Sol. Phys., 48, 389, 1976. [CrossRef]
  • Gray, L.J., J. Beer, M. Geller, J.D. Haigh, M. Lockwood, et al., Solar influences on climate, Rev. Geophys., 48, RG4001, 2010. [NASA ADS] [CrossRef]
  • Grechnev, V.V., A.M. Uralov, V.G. Zandanov, N.Y. Baranov, and K. Shibasaki, PASJ, 58, 69, 2006.
  • Guglielmino, S.L., Observational consequences of flux emergence form the photosphere to the corona: the role of interactions, 4th Hinode Science Meeting: Unsolved Problems and Recent Insights, ASP Conference series, 455, 109, 2012.
  • Guglielmino, S.L., and F. Zuccarello, High-resolution observations of siphon flows in a solar magnetic pore, Astrophys. J. Lett., 743, L9–L14, 2011. [CrossRef]
  • Guglielmino, S.L., L.R. Bellot Rubio, F. Zuccarello, G. Aulanier, S. Vargas Domínguez, and S. Kamio, Multiwavelength observations of small-scale reconnection events triggered by magnetic flux emergence in the solar atmosphere, Astrophys. J., 724, 1083–1098, 2010. [NASA ADS] [CrossRef]
  • Guglielmino, S.L., V. Martínez Pillet, J.A. Bonet, J. Carlos del Toro Iniesta, L.R. Bellot Rubio, et al., The Frontier between small-scale bipoles and ephemeral regions in the solar photosphere: emergence and decay of an intermediate-scale bipole observed with SUNRISE/IMaX, Astrophys. J., 745, A160, 2012a. [NASA ADS] [CrossRef]
  • Gui, B., C. Shen, Y. Wang, P. Ye, J. Liu, S. Wang, and X. Zhao, Quantitative analysis of CME deflections in the corona, Sol. Phys., 271, 111–139, 2011. [CrossRef]
  • Gunár, S., S. Parenti, U. Anzer, P. Heinzel, and J.-C. Vial, A&A, 535, A122, 2011. [NASA ADS] [CrossRef] [EDP Sciences]
  • Hagenaar, H.J., Ephemeral regions on a sequence of full-disk michelson doppler imager magnetograms, Astrophys. J., 555, 448–461, 2001. [NASA ADS] [CrossRef]
  • Haigh, J.D., A.R. Winning, R. Toumi, and J.W. Harder, An influence of solar spectral variations on radiative forcing of climate, Nature, 467, 696–699, 2010. [NASA ADS] [CrossRef] [PubMed]
  • Hara, H., T. Watanabe, L.K. Harra, et al., Astrophys. J., 678, L67, 2008. [NASA ADS] [CrossRef]
  • Harder, J.W., J.M. Fontenla, P. Pilewskie, E.C. Richard, and T.N. Woods, Trends in solar spectral irradiance variability in the visible and infrared, Geophys. Res. Lett., 36, 7801, 2009. [NASA ADS] [CrossRef]
  • Hochedez, J.-F., W. Schmutz, Y. Stockman, U. Schühle, A. Benmoussa, et al., LYRA, a solar UV radiometer on Proba2, Adv. Space Res., 37, 303–312, 2006. [NASA ADS] [CrossRef]
  • Holder, Z.A., R.C. Canfield, R.A. McMullen, D. Nandy, R.F. Howard, and A.A. Pevtsov, On the tilt and twist of solar active regions, Astrophys. J., 611, 1149–1155, 2004. [CrossRef]
  • Howard, T., Coronal Mass Ejection: An Introduction, Springer, Berlin, 2011. [CrossRef]
  • Howard, R.A., J.D. Moses, A. Vourlidas, J.S. Newmark, D.G. Socker, and S.P. Plunkett, Sun Earth connection coronal and heliospheric investigation (SECCHI), Space Sci. Rev., 136, 67–115, 2008. [NASA ADS] [CrossRef]
  • Hu, Q., and B.U.O. Sonnerup, Reconstruction of magnetic clouds in the solar wind: orientations and configurations, JGRA, 107, SSH 10-1, 2002.
  • Hundhausen, A.J., J. Geophys. Res., 98 (A8), 177–13200, 1993. [CrossRef]
  • Hundhausen, A.J., J.T. Burkepile, and O.C. St. Cyr, J. Geophys. Res., 99 (A4), 6543–6552, 1994. [CrossRef]
  • Inhester, B. Stereoscopy basics for the STEREO mission, arXiv:astro-ph/0612649, 2006.
  • Isenberg, P.A., T.G. Forbes, and P. Demoulin, Catastrophic evolution of a force-free flux rope: a model for eruptive flares, Astrophys. J., 417, 368, 1993. [CrossRef]
  • Jacobs, C., and S. Poedts, A polytropic model for the solar wind, Adv. Space Res., 48, 1958–1966, 2011. [NASA ADS] [CrossRef]
  • Jacobs, C., B. van der Holst, and S. Poedts, Comparison between 2.5D and 3D simulations of coronal mass ejections, Astrophys. J., 470, 359–365, 2007.
  • Joshi, V., and N. Srivastava, Bull. Astron. Soc India, 35, 447, 2007.
  • Joshi, A.D., and N. Srivastava, Kinematics of two eruptive prominences observed by EUVI/STEREO, Astrophys. J., 104, 730, 2011a.
  • Joshi, A.D., and N. Srivastava, Acceleration of coronal mass ejections from three-dimensional reconstruction of STEREO images, Astrophys. J., 739, 8, 2011b. [CrossRef]
  • Kaiser, M.L., T.A. Kucera, J.M. Davila, O.C. St. Cyr, M. Guhathakurta, and E. Christian, Space Sci. Rev., 136, 5, 2008. [NASA ADS] [CrossRef]
  • Kahler, S.W., and D.F. Webb, V arc interplanetary coronal mass ejections observed with the solar mass ejection imager, JGR, 112, 1, DOI: 10.1029/2007JA012358, 2007. [CrossRef]
  • Kilpua, E., M. Mierla, L. Rodriguez, A.N. Zhukov, N. Srivastava, and M. West, Estimating travel times of coronal mass ejections to 1 AU using multi-spacecraft coronagraph data, Sol. Phys., 279, 477–496, 2012. [CrossRef]
  • Kim, R.-S., N. Gopalswamy, Y.-J. Moon, K.-S. Cho, and S. Yashiro, Magnetic field strength in the upper solar corona using white-light shock structures surrounding coronal mass ejections, Astrophys. J., 746, 118, 2012. [NASA ADS] [CrossRef]
  • Kleimann, J., 4pi Models of CMEs and ICMEs, arXiv e-prints, 2012.
  • Kliem, B., and T. Török, Torus instability, Phys. Rev. Lett., 96, 255002, 2006. [NASA ADS] [CrossRef] [PubMed]
  • Klimchuk, J.A., Theory of coronal mass ejections, in: Geophys. Monograph Series, 125, Space Weather, edited by P., Song, H.J. Singer, and G.L. Siscoe, (AGU), 143, 2001.
  • Klimchuk, J.A., Sol. Phys., 234, 41, 2006. [NASA ADS] [CrossRef]
  • Klimchuk, J.A., S. Patsourakos, and P. J. Cargill, Astrophys. J., 682, 1351, 2008. [NASA ADS] [CrossRef]
  • Ko, Y.-K., G.A. Doschek, H.P. Warren, and P.R. Young, Astrophys. J., 697, 1956, 2009. [NASA ADS] [CrossRef]
  • Kozarev, K.A., K.E. Korreck, V.V. Lobzin, M.A. Weber, and N.A. Schwadron, Off-limb solar coronal wavefronts from SDO/AIA extreme-ultraviolet observations: implications for particle production, Astrophys. J., 733, L25, 2011. [NASA ADS] [CrossRef]
  • Krall, J., J. Chen, and R. Santoro, Astrophys. J., 539, 964, 2000. [CrossRef]
  • Kretzschmar, M., J. Lilensten, and J. Aboudarham, Variability of the EUV quiet Sun emission and reference spectrum using SUMER, A&A, 419, 345–356, 2004. [NASA ADS] [CrossRef] [EDP Sciences]
  • Kretzschmar, M., T. Dudok de Wit, J. Lilensten, J.-F. Hochedez, J. Aboudarham, P.-O. Amblard, F. Auchère, and S. Moussaoui, Solar EUV/FUV irradiance variations: analysis and observational strategy, Acta Geophys., 57, 42–51, 2008. [NASA ADS] [CrossRef]
  • Krivova, N.A., S.K. Solanki, and L. Floyd, Reconstruction of solar UV irradiance in cycle 23, A&A, 452, 631–639, 2006. [NASA ADS] [CrossRef] [EDP Sciences]
  • Kubo, M., T. Shimizu, and B.W. Lites, The evolution of vector magnetic fields in an emerging flux region, Astrophys. J., 595, 465–482, 2003. [NASA ADS] [CrossRef]
  • Kucera, T.A., and E. Landi, Astrophys. J., 673, 611, 2008. [NASA ADS] [CrossRef]
  • LaBonte, B. J., M. K. Georgoulis, and D. M. Rust, Astrophys. J., 671, 955, 2007. [NASA ADS] [CrossRef]
  • Labrosse, N., P. Heinzel, J. Vial, et al., arXiv e-prints, 2010.
  • Lean, J.L., H.P. Warren, J.T. Mariska, and J. Bishop, A new model of solar EUV irradiance variability 2. Comparisons with empirical models and observations and implications for space weather, J. Geophys. Res. (Space Phys.), 108, 1059, 2003. [CrossRef]
  • Lean, J., G. Rottman, J. Harder, and G. Kopp, SORCE contributions to new understanding of global change and solar variability, Sol. Phys., 230, 27–53, 2005. [NASA ADS] [CrossRef]
  • Lee, M.A., Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock, Astrophys. J.S, 158, 38–67, 2005. [NASA ADS] [CrossRef]
  • Lepping, R.P., L.F. Burlaga, and J.A. Jones, Magnetic field structure of interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 95, 11957–11965, 1990. [NASA ADS] [CrossRef]
  • Li, T., J. Zhang, H. Zhao, and S. Yang, Astrophys. J., 720, 144, 2010. [CrossRef]
  • Li, T., J. Zhang, H. Zhao, and S. Yang, Astrophys. J., 739 (1), 43, 2011. [CrossRef]
  • Li, T., J. Zhang, S. Yang, and W. Liu, SDO/AIA observations of secondary waves generated by interaction of the 2011 June 7 global EUV wave with solar coronal structures, Astrophys. J., 746, 13, 2012. [NASA ADS] [CrossRef]
  • Liewer, P.C., E.M. de Jong, J.R. Hall, R.A. Howard, W.T. Thompson, J.L. Culhane, L. Bone, and L. van Driel-Gesztelyi, Sol. Phys., 256, 57–58, 2009. [NASA ADS] [CrossRef]
  • Lin, J., and T.G. Forbes, Effects of reconnection on the coronal mass ejection process, J. Geophys. Res., 105, 2375–2392, 2000. [NASA ADS] [CrossRef]
  • Lin, J., T.G. Forbes, P.A. Isenberg, and P. Demoulin, The effect of curvature on flux-rope models of coronal mass ejections, Astrophys. J., 504, 1006, 1998. [NASA ADS] [CrossRef]
  • Lin, Y., S.F. Martin, and O. Engvold, in: Astronomical Society of the Pacific Conference Series, Vol. 383, Subsurface and Atmospheric Influences on Solar Activity, Edited by R., Howe, R.W. Komm, K.S. Balasubramaniam, and G.J.D. Petrie, 383, 235, 2008.
  • Liu, Y.C.-M., M. Opher, O. Cohen, P.C. Liewer, and T.I. Gombosi, A simulation of a coronal mass ejection propagation and shock evolution in the lower solar corona, Astrophys. J., 680, 757–763, 2008. [NASA ADS] [CrossRef]
  • Liu, W., N.V. Nitta, C.J. Schrijver, A.M. Title, and T.D. Tarbell, First SDO AIA observations of a global coronal EUV “Wave”: multiple components and “Ripples”, Astrophys. J., 723, L53–L59, 2010. [NASA ADS] [CrossRef]
  • Liu, Y., J.G. Luhmann, S.D. Bale, and R.P. Lin, Solar source and heliospheric consequences of the 2010 april 3 coronal mass ejection: a comprehensive view, Astrophys. J., 734, 84, 2011. [CrossRef]
  • Lopez, F.M., Extensin Espacial de CMEs Segn Imgenes Polarizadas de STEREO/COR1, Bach Thesis, Universidad Nacional de San Juan, Argentina, 104 pp, 2012.
  • Low, B.C., Solar activity and the corona, Sol. Phys., 167, 217–265, 1996. [NASA ADS] [CrossRef]
  • Lugaz, N., A. Vourlidas, and I.I. Roussev, Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere – application to CME-CME interaction, Ann. Geophys., 27, 3479–3488, 2009. [CrossRef]
  • Lugaz, N., I.I. Roussev, and T.I. Gombosi, Determining CME parameters by fitting heliospheric observations: Numerical investigation of the accuracy of the methods, Adv. Space Res., 48, 292–299, 2011. [CrossRef]
  • Lynch, B.J., S.K. Antiochos, C.R. DeVore, J.G. Luhmann, and T.H. Zurbuchen, Topological evolution of a fast magnetic breakout CME in three dimensions, Astrophys. J., 683, 1192–1206, 2008. [NASA ADS] [CrossRef]
  • Ma, S., J.C. Raymond, L. Golub, J. Lin, H. Chen, P. Grigis, P. Testa, and D. Long, Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA, Astrophys. J., 738, 160, 2011. [NASA ADS] [CrossRef]
  • MacNeice, P., S.K. Antiochos, A. Phillips, et al., A numerical study of the breakout model for coronal mass ejection initiation, Astrophys. J., 614, 1028–1041, 2005. [NASA ADS] [CrossRef]
  • MacQueen, R.M., and R.R. Fisher, Sol. Phys., 89, 89, 1983. [NASA ADS] [CrossRef]
  • MacTaggart, D., Flux emergence within mature solar active regions, A&A, 531, A108, 2011. [NASA ADS] [CrossRef] [EDP Sciences]
  • Manchester, W.B. IV, T.I. Gombosi, D.L. De Zeeuw, I.V. Sokolov, I.I. Roussev, K.G. Powell, J. Kóta, G. Tóth, and T.H. Zurbuchen, Coronal mass ejection shock and sheath structures relevant to particle acceleration, Astrophys. J., 622, 1225–1239, 2005. [NASA ADS] [CrossRef]
  • Manoharan, P.K., and A. Mujiber Rahman, J. Atmos. Sol. Terr. Phys., 73, 671, 2011. [CrossRef]
  • Martens, P.C.H., C.C. Kankelborg, and T.E. Berger, Astrophys. J., 537, 471, 2000. [NASA ADS] [CrossRef]
  • Martin, S.F., Sol. Phys., 182, 107, 1998. [NASA ADS] [CrossRef]
  • Martin, S.F., Adv. Space Res., 32, 1883, 2003. [NASA ADS] [CrossRef]
  • Martínez González, M.J., and L.R. Bellot Rubio, Emergence of small-scale magnetic loops through the quiet solar atmosphere, Astrophys. J., 700, 1391–1403, 2009. [NASA ADS] [CrossRef]
  • Merkel, A.W., J.W. Harder, D.R. Marsh, A.K. Smith, J.M. Fontenla, and T.N. Woods, The impact of solar spectral irradiance variability on middle atmospheric ozone, Geophys. Res. Lett., 38, 13802, 2011. [NASA ADS] [CrossRef]
  • Messerotti, M., F. Zuccarello, S.L. Guglielmino, V. Bothmer, J. Lilensten, G. Noci, M. Storini, and H. Lundstedt, Space Sci. Rev., 147, 121, 2009. [CrossRef]
  • Mierla, M., J. Davila, W. Thompson, B. Inhester, N. Srivastava, M. Kramar, O.C. StCyr, G. Stenborg, and R.A. Howard, A quick method for estimating the propagation direction of coronal mass ejections using STEREO-COR1 images, Sol. Phys., 252, 385–396, 2008. [CrossRef]
  • Mierla, M., B. Inhester, C. Marque, L. Rodriguez, S. Gissot, A. Zhukov, D. Berghmans, and J. Davila, On 3D reconstruction of coronal mass ejections: I. Method description and application to SECCHI-COR data, Sol. Phys., 259, 123–141, 2009. [NASA ADS] [CrossRef]
  • Mierla, M., B. Inhester, A. Antunes, Y. Boursier, J.P. Byrne, et al., On the 3-D reconstruction of coronal mass ejections using coronagraph data, Ann. Geophys., 28, 203–215, 2010. [NASA ADS] [CrossRef]
  • Mierla, M., I. Chifu, B. Inhester, L. Rodriguez, and A. Zhukov, Low polarised emission from the core of coronal mass ejections, A&A, 530, L1–L4, DOI: 10.1051/0004-6361/201016295, 2011. [NASA ADS] [CrossRef] [EDP Sciences]
  • Mikic, Z., and J.A. Linker, Disruption of coronal magnetic field arcades, Astrophys. J., 430, 898–912, 1994. [NASA ADS] [CrossRef]
  • Moon, Y.-J., G.S. Choe, H. Wang, et al., Astrophys. J., 581, 694, 2002. [CrossRef]
  • Moran, T.G., and J.M. Davila, Three-dimensional polarimetric imaging of coronal mass ejections, Science, 305, 66–70, 2004. [NASA ADS] [CrossRef] [PubMed]
  • Moreno-Insertis, F., K. Galsgaard, and I. Ugarte-Urra, Hinode Observations and Three-dimensional Computer Modeling, Astrophys. J., 673, L211–L214, 2008. [NASA ADS] [CrossRef]
  • Möstl, C., M. Temmer, T. Rollett, C.J. Farrugia, Y. Liu, A.M. Veronig, M. Leitner, and H.K. Biernat, STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5–7 April 2010, GeoRL, 37, L24103, 2010.
  • Ng, C.K., and D.V. Reames, Shock acceleration of solar energetic protons: the first 10 minutes, Astrophys. J., 686, L123–L126, 2008. [NASA ADS] [CrossRef]
  • November, L.J., and G.W. Simon, Precise proper-motion measurement of solar granulation, Astrophys. J., 333, 427, 1988. [NASA ADS] [CrossRef]
  • Ofman, L., and B.J. Thompson, SDO/AIA observation of Kelvin-Helmholtz instability in the solar corona, Astrophys. J. Lett., 734, id L11, 2011. [NASA ADS] [CrossRef]
  • Oliver, R., Space Sci. Rev., 39, 2009.
  • Ontiveros, V., and A. Vourlidas, Quantitative measurements of coronal mass ejection-driven shocks from LASCO observations, Astrophys. J., 693, 267–275, 2009. [NASA ADS] [CrossRef]
  • Panasenco, O., S.F. Martin, A.D. Joshi, and N. Srivastava, Rolling motion in erupting prominences observed by STEREO, J. Atmos. Sol. Terr. Phys., 73, 1129–1137, 2011. [NASA ADS] [CrossRef]
  • Parenti, S., and J.-C. Vial, A&A, 469, 1109, 2007. [NASA ADS] [CrossRef] [EDP Sciences]
  • Parenti, S., and P.R. Young, A&A, 492, 857, 2008. [CrossRef] [EDP Sciences]
  • Parenti, S., J.-C. Vial, and P. Lemaire, Sol. Phys., 220, 61, 2004. [NASA ADS] [CrossRef]
  • Parenti, S., P. Lemaire, and J Vial, A&A, 443, 685, 2005a. [CrossRef] [EDP Sciences]
  • Parenti, S., J.-C. Vial, and P. Lemaire, A&A, 443, 679, 2005b. [NASA ADS] [CrossRef] [EDP Sciences]
  • Parenti, S., E. Buchlin, P.J. Cargill, S. Galtier, and J.-C. Vial, 651, 1219, 2006.
  • Parenti, S., F. Reale, and K.K. Reeves, A&A, 517, A41, 2010. [NASA ADS] [CrossRef] [EDP Sciences]
  • Parenti, S., B. Schmieder, P. Heinzel, and L. Golub, On the nature of prominence emission observed by SDO/AIA, Astrophys. J., 754, A66, 2012. [NASA ADS] [CrossRef]
  • Pariat, E., P. Démoulin, and M.A. Berger, Photospheric flux density of magnetic helicity, A&A, 439, 1191, 2005. [NASA ADS] [CrossRef] [EDP Sciences]
  • Park, S.H., J. Lee, G.S. Choe, J. Chae, H. Jeong, G. Yang, J. Jing, and H. Wang, 686, 1379, 2008.
  • Park, S.H., J. Chae, and H. Wang, Astrophys. J., 718, 43, 2010. [NASA ADS] [CrossRef]
  • Patsourakos, S., and A. Vourlidas, On the nature and genesis of EUV Waves: a synthesis of observations from SOHO, STEREO, SDO, and hinode, arXiv e-prints, http://arxiv.org/abs/1203.1135, 2012.
  • Pick, M., T.G. Forbes, G. Mann, H.V. Cane, J. Chen, et al., Multi-wavelength observations of CMEs and associated phenomena. Report of Working Group F, Space Sci. Rev., 123, 341–382, 2006. [NASA ADS] [CrossRef]
  • Pomoell, J., and R. Vainio, Influence of solar wind heating formulations on the properties of shocks in the corona, Astrophys. J., 745, 151, 2012. [NASA ADS] [CrossRef]
  • Pomoell, J., R. Vainio, and R. Kissmann, MHD simulation of the evolution of shock structures in the solar corona: implications for coronal shock acceleration, Astrophys. Space Sci. Trans., 7, 387–394, 2011. [NASA ADS] [CrossRef]
  • Porter, L.J., and J.A. Klimchuk, Astrophys. J., 454, 499, 1995. [NASA ADS] [CrossRef]
  • Priest, E.R., Astrophys. J., 328, 848, 1988. [CrossRef]
  • Raadu, M.A., J.M. Malherbe, B. Schmieder, and P. Mein, Sol. Phys., 109, 59, 1987. [CrossRef]
  • Rachmeler, L.A., C.E. DeForest, and C.C. Kankelborg, Reconnectionless CME eruption: putting the aly-sturrock conjecture to rest 2009, Astrophys. J., 693, 1431, 2009. [NASA ADS] [CrossRef]
  • Reale, F., Living Rev. Sol. Phys., 7, 5, 2010.
  • Reale, F., S. Parenti, K.K. Reeves, et al., Science, 318, 1582, 2007. [NASA ADS] [CrossRef] [PubMed]
  • Reale, F., P. Testa, J.A. Klimchuk, and S. Parenti, Astrophys. J., 698, 756, 2009. [NASA ADS] [CrossRef]
  • Reames, D.V., Particle acceleration at the Sun and in the heliosphere, Space Sci. Rev., 90, 413–491, 1999. [NASA ADS] [CrossRef]
  • Robbrecht, E., and D. Berghmans, Automated recognition of coronal mass ejections (CMEs) in near-real-time data, A&A, 425, 1097–1106, 2004. [NASA ADS] [CrossRef] [EDP Sciences]
  • Robbrecht, E., D. Berghmans, and R.A.M. Van der Linden, Automated LASCO CME catalog for solar cycle 23: are CMEs scale invariant? Astrophys. J., 691, 1222–1234, 2009. [NASA ADS] [CrossRef]
  • Romano, P., and F. Zuccarello, Flare occurrence and the spatial distribution of the magnetic helicity flux, A&A, 535, A1, 2012. [NASA ADS] [CrossRef] [EDP Sciences]
  • Romano, P., E. Pariat, M. Sicari, and F. Zuccarello, A solar eruption triggered by the interaction between two magnetic flux systems with opposite magnetic helicity, A&A, 525, A13, 2011. [NASA ADS] [CrossRef] [EDP Sciences]
  • Romano, P., F. Zuccarello, S. Poedts, A. Soenen, and F.P. Zuccarello, Magnetic helicity and active filament configuration, A&A, 506, 895, 2009. [CrossRef] [EDP Sciences]
  • Rouillard, A.P., D. Odstrcil, N.R. Sheeley, A. Tylka, A. Vourlidas, et al., Interpreting the properties of solar energetic particle events by using combined imaging and modeling of interplanetary shocks, Astrophys. J., 735, ID 7, 2011. [NASA ADS] [CrossRef]
  • Roussev, I.I., T.G. Forbes, T.I. Gombosi, et al., A three-dimensional flux rope model for coronal mass ejections based on a loss of equilibrium, Astrophys. J., 588, L45–L48, 2003. [NASA ADS] [CrossRef]
  • Roussev, I.I., I.V. Sokolov, T.G. Forbes, T.I. Gombosi, M.A. Lee, and J.I. Sakai, A numerical model of a coronal mass ejection: shock development with implications for the acceleration of GeV protons, Astrophys. J., 605, L73–L76, 2004. [CrossRef]
  • Sainz Dalda, A., S. Vargas Domínguez, and T.D. Tarbell, Magnetic topology of a naked sunspot: is it really naked? Astrophys. J., 746, L13, 2012. [NASA ADS] [CrossRef]
  • Sandroos, A., and R. Vainio, Particle acceleration at shocks propagating in inhomogeneous magnetic fields, A&A, 455, 685–695, 2006. [NASA ADS] [CrossRef] [EDP Sciences]
  • Sandroos, A., and R. Vainio, Reacceleration of flare ions in coronal and interplanetary shock waves, Astrophys. J. Suppl., 181, 183–196, 2009a. [NASA ADS] [CrossRef]
  • Sandroos, A., and R. Vainio, Diffusive shock acceleration to relativistic energies in the solar corona, A&A, 507, L21–L24, 2009b. [NASA ADS] [CrossRef] [EDP Sciences]
  • Schmieder, B., M.A. Raadu, and J.E. Wiik, A&A, 252, 353, 1991.
  • Schmieder, B., C. Delannée, D.Y. Yong, J.C. Vial, and M. Madjarska, A&A, 358, 728, 2000.
  • Schmutz, W., A. Fehlmann, G. Hüsen, P. Meindl, R. Winkler, et al., The PREMOS/PICARD instrument calibration, Metrologia, 46, S202–S206, 2009. [NASA ADS] [CrossRef]
  • Schrijver, C.J., A.W. Sandman, M.J. Aschwanden, and M.L. De Rosa, Astrophys. J., 615, 512, 2004. [NASA ADS] [CrossRef]
  • Schrijver, C.J., C. Elmore, B. Kliem, T. Török, and A.M. Title, Astrophys. J., 674, 586–595, 2008. [NASA ADS] [CrossRef]
  • Schuck, P.W., Local correlation tracking and the magnetic induction equation, Astrophys. J., 632, L53, 2005. [NASA ADS] [CrossRef]
  • Seaton, D.B., M. Mierla, D. Berghmans, A.N. Zhukov, and L. Dolla, Astrophys. J., 727, L10, 2011. [NASA ADS] [CrossRef]
  • Selwa, M., S. Poedts, and C.R. DeVore, Dome-shaped EUV waves from rotating active regions, Astrophys. J., 747, L21, 2012. [CrossRef]
  • Shapiro, A.I., W. Schmutz, M. Schoell, M. Haberreiter, and E. Rozanov, NLTE solar irradiance modeling with the COSI code, A&A, 517, A48, 2010. [NASA ADS] [CrossRef] [EDP Sciences]
  • Sheeley, N.R., J.H. Walters, Y.-M. Wang, and R.A. Howard, Continuous tracking of coronal outflows: two kinds of coronal mass ejections, J. Geophys. Res., 104, 24739–24768, 1999. [NASA ADS] [CrossRef]
  • Smyrli, A., F. Zuccarello, P. Romano, F.P. Zuccarello, S.L. Guglielmino, D. Spadaro, A.W. Hood, and D. Mackay, Trend of photospheric magnetic helicity flux in active regions generating halo coronal mass ejections, A&A, 521, A56, 2010. [NASA ADS] [CrossRef] [EDP Sciences]
  • Solanki, S.K., Sunspots: an overview, A&A Review, 11, 153–286, 2003. [NASA ADS] [CrossRef]
  • Spadaro, D., S. Billotta, L. Contarino, P. Romano, and F. Zuccarello, AFS dynamic evolution during the emergence of an active region, A&A, 425, 309–319, 2004. [NASA ADS] [CrossRef] [EDP Sciences]
  • Srivastava, N., and A. Ambastha, Ap&SS, 262, 29, 1998. [CrossRef]
  • Srivastava, N., A. Ambastha, and A. Bhatnagar, Sol. Phys., 133, 339, 1991. [CrossRef]
  • Srivastava, N., R. Schwenn, B. Inhester, G. Stenborg, and B. Podlipnik, Space Sci. Rev., 87, 303, 1999. [CrossRef]
  • Srivastava, N., R. Schwenn, B. Inhester, S.F. Martin, and Y. Hanaoka, Astrophys. J., 534, 468, 2000. [CrossRef]
  • Sterling, A.C., and R.L. Moore, Astrophys. J., 602, 1024, 2004a. [NASA ADS] [CrossRef]
  • Sterling, A.C., and R.L. Moore, Astrophys. J., 613, 1221, 2004b. [NASA ADS] [CrossRef]
  • Sterling, A.C., and R.L. Moore, Astrophys. J., 630, 1148, 2005. [NASA ADS] [CrossRef]
  • Sterling, A.C., L.K. Harra, and R.L. Moore, Astrophys. J., 669, 1359, 2007. [NASA ADS] [CrossRef]
  • Sturrock, P.A., Maximum energy of semi-infinite magnetic field configurations, Astrophys. J., 380, 655–659, 1991. [CrossRef]
  • Su, Y., V. Surges, A. van Ballegooijen, E. DeLuca, and L. Golub, Observations and magnetic field modeling of the flare/coronal mass ejection event on 2010 April 8, Astrophys. J., 734, id 53, 2011. [NASA ADS] [CrossRef]
  • Tandberg-Hanssen, E., S.F. Martin, and R.T. Hansen, Sol. Phys., 65, 357, 1980. [CrossRef]
  • Temmer, M., A.M. Veronig, E.P. Kontar, S. Krucker, and B. Vršnak, Astrophys. J., 712, 1410, 2010. [NASA ADS] [CrossRef]
  • Temmer, M., T. Rollett, C. Mostl, A. Veronig, B. Vršnak Bojan, and D. Odstrcil, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections, Astrophys. J., 743, CiteID 101, 2011. [CrossRef]
  • Teriaca, L., D. Banerjee, and J.G. Doyle, A&A, 349, 636, 1999.
  • Teriaca, L., D. Banerjee, A. Falchi, J.G. Doyle, and M.S. Madjarska, A&A, 427, 1065, 2004. [NASA ADS] [CrossRef] [EDP Sciences]
  • Thernisien, A., R.A. Howard, and A. Vourlidas, Modeling of flux rope coronal mass ejections, Astrophys. J., 652, 763–773, 2006. [NASA ADS] [CrossRef]
  • Thernisien, A., A. Vourlidas, and R.A. Howard, Forward modelling of coronal mass ejections using stereo-secchi data, Sol. Phys., 256, 1110, 2009. [NASA ADS] [CrossRef]
  • Thernisien, A., A. Vourlidas, and R.A. Howard, CME reconstruction: pre-STEREO and STEREO era, JASTP, 73, 1156–1165, 2011. [NASA ADS] [CrossRef]
  • Thompson, W.T., Strong rotation of an erupting quiescent polar crown prominence, JASTP, 73, 1138, 171147, 2011. [CrossRef]
  • Tian, L., D. Alexander, Y. Liu, and J. Yang, Magnetic twist and writhe of δ active regions, Sol. Phys., 229, 63–77, 2005. [CrossRef]
  • Titov, V.S., and P. Démoulin, Basic topology of twisted magnetic configurations in solar flares, A&A, 351, 707–720, 1999.
  • Tripathi, D., H. Isobe, and H.E. Mason, A&A, 453, 1111, 2006. [NASA ADS] [CrossRef] [EDP Sciences]
  • Tripathi, D., H.E. Mason, G. Del Zanna, and P.R. Young, A&A, 518, A42, 2010. [NASA ADS] [CrossRef] [EDP Sciences]
  • Tripathi, D., J.A. Klimchuk, and H.E. Mason, Astrophys. J., 740, 111, 2011. [NASA ADS] [CrossRef]
  • Torsti, J., L.G. Kocharov, M. Teittinen, and B.J. Thompson, Injection of ≳ 10 MeV protons in association with a coronal moreton wave, Astrophys. J., 510, 460–465, 1999. [NASA ADS] [CrossRef]
  • Tylka, A.J., and M.A. Lee, A model for spectral and compositional variability at high energies in large, gradual solar particle events, Astrophys. J., 646, 1319–1334, 2006. [NASA ADS] [CrossRef]
  • Tylka, A.J., C.M.S. Cohen, W.F. Dietrich, M.A. Lee, C.G. Maclennan, R.A. Mewaldt, C.K. Ng, and D.V. Reames, Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events, Astrophys. J., 625, 474–495, 2005. [NASA ADS] [CrossRef]
  • Török, T., and B. Kliem, The evolution of twisting coronal magnetic flux tubes, A&A, 406, 1043–1059, 2003. [NASA ADS] [CrossRef] [EDP Sciences]
  • Török, T., and B. Kliem, Numerical simulations of fast and slow coronal mass ejections, Astron. Nachr., 328, 743, 2007. [NASA ADS] [CrossRef]
  • Török, T., and B. Kliem, Confined and ejective eruptions of kink-unstable flux ropes, Astrophys. J., 630, L97–L100, 2005. [NASA ADS] [CrossRef]
  • Török, T., B. Kliem, and V.S. Titov, Ideal kink instability of a magnetic loop equilibrium, A&A, 413, L27–L30, 2004. [NASA ADS] [CrossRef] [EDP Sciences]
  • Ugarte-Urra, I., H.P. Warren, and D.H. Brooks, Astrophys. J., 695, 642, 2009. [NASA ADS] [CrossRef]
  • Ugarte-Urra, I., A.R. Winebarger, and H.P. Warren, Astrophys. J., 643, 1245, 2006. [NASA ADS] [CrossRef]
  • Unruh, Y.C., W.T. Ball, and N.A. Krivova, Solar irradiance models and measurements: a comparison in the 220 nm to 240 nm wavelength band, ArXiv e-prints, 2011.
  • Vaiana, G.S., and R. Rosner, ARA&A, 16, 393, 1978. [CrossRef]
  • Vainio, R., and T. Laitinen, Monte Carlo simulations of coronal diffusive shock acceleration in self-generated turbulence, Astrophys. J., 658, 622–630, 2007. [NASA ADS] [CrossRef]
  • van Ballegooijen, A.A., and P.C.H. Martens, Formation and eruption of solar prominences, Astrophys. J., 343, 971–984, 1989. [NASA ADS] [CrossRef]
  • van der Holst, B., W. Manchester, I.V. Sokolov, et al., Breakout coronal mass ejection or streamer blowout: the bugle effect, Astrophys. J., 693, 1178–1187, 2009. [CrossRef]
  • van Driel-Gesztelyi, L., Emergence and loss of magnetic flux on the solar surface, in SOLMAG 2002, Proceedings of the Magnetic Coupling of the Solar Atmosphere Euroconference, edited by H., Sawaya-Lacoste 505, Noordwijk, Netherlands, ESA Publications Division, 113–120, 2002.
  • Veronig, A.M., N. Muhr, I.W. Kienreich, M. Temmer, and B. Vršnak, First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave, Astrophys. J., 716, L57–L62, 2010. [NASA ADS] [CrossRef]
  • Vial, J.-C., K. Olivier, A.A. Philippon, A. Vourlidas, and V. Yurchyshyn, A&A, 541, A108, 2012. [CrossRef] [EDP Sciences]
  • Viall, N.M., and J.A. Klimchuk, Astrophys. J., 738, 24, 2011. [NASA ADS] [CrossRef]
  • Vieira, L.E., T. Dudok de Wit, and M. Kretzschmar, Short-term forecast of the total and spectral solar irradiance, submitted, 2012.
  • Vourlidas, A., and Russell A. Howard, The proper treatment of coronal mass ejection brightness: a new methodology and implications for observations, Astrophys. J., 642, 1216–1221, 2006. [NASA ADS] [CrossRef]
  • Vourlidas, A., and V. Ontiveros, X., Ao, and G.Z.R. Burrows, A review of coronagraphic observations of shocks driven by coronal mass ejections, Am. Inst. Phys. Conf. Ser., 1183, 139–146, 2009.
  • Vourlidas, A., B. Sanchez Andrade-Nuño, E. Landi, S. Patsourakos, L. Teriaca, U. Schühle, C.M. Korendyke, and I. Nestoras, SoPh, 261, 53, 2010.
  • Vršnak, B., Deceleration of coronal mass ejections, Sol. Phys., 202, 173–189, 2001. [NASA ADS] [CrossRef]
  • Vršnak, B., and E.W. Cliver, Origin of coronal shock waves. Invited review, Sol. Phys., 253, 215–235, 2008. [NASA ADS] [CrossRef]
  • Vršnak, B., V. Ruždjak, B. Rompolt, Sol. Phys., 136, 151, 1991. [NASA ADS] [CrossRef]
  • Vršnak, B., V. Ruždjak, B. Rompolt, D. Roša, and P. Zlobec, Sol. Phys., 146, 147, 1993. [NASA ADS] [CrossRef]
  • Vršnak, B., T. Žic, T.V. Falkenberg, et al., A&A, 512, A43, 2010. [NASA ADS] [CrossRef] [EDP Sciences]
  • Warmuth, A., Large-scale waves in the solar corona, Adv. Space Res., 45, 527–536, 2010. [NASA ADS] [CrossRef]
  • Warren, H.P., and A.R. Winebarger, Astrophys. J., 666, 1245, 2007. [NASA ADS] [CrossRef]
  • Warren, H.P., J.T. Mariska, and J. Lean, A new reference spectrum for the EUV irradiance of the quiet Sun 1. Emission measure formulation, J. Geophys. Res., 103, 12077–12090, 1998a. [NASA ADS] [CrossRef]
  • Warren, H.P., J.T. Mariska, and J. Lean, A new reference spectrum for the EUV irradiance of the quiet Sun 2, Comparisons with observations and previous models, 103, 12091–12102, 1998b.
  • Warren, H.P., I. Ugarte-Urra, G.A. Doschek, D.H. Brooks, and D.R. Williams, Astrophys. J., 686, L131, 2008. [NASA ADS] [CrossRef]
  • Warren, H.P., D.H. Brooks, and A.R. Winebarger, Astrophys. J., 734, 90, 2011. [NASA ADS] [CrossRef]
  • Webb, D.F., and T.A. Howard, LRSP, 9, 3, 2012.
  • Weber, M.A., J.T. Schmelz, E.E. DeLuca, and J.K. Roames, Astrophys. J., 635, L101, 2005. [NASA ADS] [CrossRef]
  • Winebarger, A.R., and H.P. Warren, Astrophys. J., 626, 543, 2005. [NASA ADS] [CrossRef]
  • Winebarger, A.R., J.T. Schmelz, H.P. Warren, S.H. Saar, and V.L. Kashyap, Astrophys. J., 740, 2, 2011. [NASA ADS] [CrossRef]
  • Wolfson, R., and B. Dlamini, Cross-field currents: an energy source for coronal mass ejections? Astrophys. J., 483, 961, 1997. [CrossRef]
  • Wood, B.E., C.-C. Wu, R.A. Howard, D.G. Socker, and A.P. Rouillard, Empirical reconstruction and numerical modeling of the first geoeffective coronal mass ejection of solar cycle 24, Astrophys. J., 729, ID 70, 2011. [NASA ADS] [CrossRef]
  • Woods, T.N., F.G. Eparvier, R. Hock, A.R. Jones, D. Woodraska, et al., Extreme ultraviolet variability experiment (EVE) on the solar dynamics observatory (SDO): overview of science objectives, Instrument Design, Data Products, and Model Developments, Jan, 3, 2010.
  • Xie, H., D. Odstrcil, L. Mays, O.C. St. Cyr, N. Gopalswamy, and H. Cremades, Understanding shock dynamics in the inner heliosphere with modeling and Type II radio data: The 2010-04-03 event, J. Geophys. Res. A: Space Phys., 117, id A04105, 2012.
  • Yashiro, S., N. Gopalswamy, G. Michalek, et al., J. Geophys. Res., 109, 7105, 2004. [NASA ADS] [CrossRef]
  • Yokoyama, T., and K. Shibata, Magnetic reconnection as the origin of X-ray jets and Hα surges on the Sun, Nature, 375, 42–44, 1995. [NASA ADS] [CrossRef]
  • Yurchyshyn, V., Relationship between EIT posteruption arcades, coronal mass ejections, the coronal neutral line, and magnetic clouds, Astrophys. J., 675, L49–L52, 2008. [NASA ADS] [CrossRef]
  • Zhang, J., and K.P. Dere, Astrophys. J., 649, 1100, 2006. [NASA ADS] [CrossRef]
  • Zuccarello, F., V. Battiato, L. Contarino, P. Romano, D. Spadaro, and L. Vlahos, AFS dynamics in a short-lived active region, A&A, 442, 661–671, 2005. [NASA ADS] [CrossRef] [EDP Sciences]
  • Zuccarello, F., V. Battiato, L. Contarino, S. Guglielmino, P. Romano, and D. Spadaro, A C-level flare observed in an arch filament system: reconnection between pre-existing and emerging field lines? A&A, 488, 1117–1123, 2008. [NASA ADS] [CrossRef] [EDP Sciences]
  • Zuccarello, F.P., A. Soenen, S. Poedts, F. Zuccarello, and C. Jacobs, Initiation of coronal mass ejections by magnetic flux emergence in the framework of the breakout model, Astrophys. J., 689, L157–L160, 2008. [NASA ADS] [CrossRef]
  • Zuccarello, F., P. Romano, S.L. Guglielmino, M. Centrone, S. Criscuoli, I. Ermolli, F. Berrilli, and D. Del Moro, Observation of bipolar moving magnetic features streaming out from a naked spot, A&A, 500, L5–L8, 2009a. [NASA ADS] [CrossRef] [EDP Sciences]
  • Zuccarello, F., S.L. Guglielmino, V. Battiato, L. Contarino, D. Spadaro, and P. Romano, Emergence and evolution of active and ephemeral regions: comparison between observations and models, Acta Geophys., 57, 15–23, 2009b. [CrossRef]
  • Zuccarello, F.P., C. Jacobs, A. Soenen, et al., Modelling the initiation of coronal mass ejections: magnetic flux emergence versus shearing motions, A&A, 507, 441–452, 2009. [NASA ADS] [CrossRef] [EDP Sciences]
  • Zuccarello, F.P., P. Romano, F. Zuccarello, and S. Poedts, Magnetic helicity balance during a filament eruption that occurred in active region NOAA 9682, A&A, 530, 36–530, 2011. [CrossRef] [EDP Sciences]
  • Zuccarello, F.P., A. Bemporad, C. Jacobs, et al., Astrophys. J., 744, 66, 2012a. [NASA ADS] [CrossRef]
  • Zuccarello, F.P., Z. Meliani, and S. Poedts, Numerical modeling of the initiation of coronal mass ejections in active region NOAA 9415, Astrophys. J., 758, 117, 2012b. [NASA ADS] [CrossRef]
  • Zuccarello, F.P., P. Romano, F. Zuccarello, and S. Poedts, The role of photospheric shearing motions in a filament eruption related to the 2010 April 3 coronal mass ejection, A&A, 537, A28, 2012c. [CrossRef] [EDP Sciences]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.