Statistical Challenges in Solar Information Processing
Open Access
Issue
J. Space Weather Space Clim.
Volume 5, 2015
Statistical Challenges in Solar Information Processing
Article Number A19
Number of page(s) 14
DOI https://doi.org/10.1051/swsc/2015020
Published online 03 July 2015
  • Brueckner, G.E., R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, et al. The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys., 162, 357–402, 1995, DOI: 10.1007/BF00733434. [NASA ADS] [CrossRef]
  • Byrne, J.P., P.T. Gallagher, R.T.J. McAteer, and C.A. Young. The kinematics of coronal mass ejections using multiscale methods. Astron. Astrophys., 495, 325–334, 2009, DOI: 10.1051/0004-6361:200809811. [NASA ADS] [CrossRef] [EDP Sciences]
  • Byrne, J.P., D.M. Long, P.T. Gallagher, D.S. Bloomfield, S.A. Maloney, R.T.J. McAteer, H. Morgan, and S.R. Habbal. Improved methods for determining the kinematics of coronal mass ejections and coronal waves. Astron. Astrophys., 557, A96, 2013, DOI: 10.1051/0004-6361/201321223. [CrossRef]
  • Byrne, J.P., S.A. Maloney, R.T.J. McAteer, J.M. Refojo, and P.T. Gallagher. Propagation of an Earth-directed coronal mass ejection in three dimensions. Nature Communications, 1, 74, 2010, DOI: 10.1038/ncomms1077. [NASA ADS] [CrossRef]
  • Byrne, J.P., H. Morgan, S.R. Habbal, and P.T. Gallagher. Automatic detection and tracking of coronal mass ejections. II. Multiscale filtering of coronagraph images. Astrophys. J., 752, 145, 2012, DOI: 10.1088/0004-637X/752/2/145. [NASA ADS] [CrossRef]
  • Carley, E.P., D.M. Long, J.P. Byrne, P. Zucca, D.S. Bloomfield, J. McCauley, and P.T. Gallagher. Quasiperiodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere. Nat. Phys., 9, 811–816, 2013, DOI: 10.1038/nphys2767. [NASA ADS] [CrossRef]
  • Chen, P.F. Coronal mass ejections: models and their observational basis. Living Rev. Sol. Phys., 8, 1, 2011.
  • Colaninno, R.C., and A. Vourlidas. Analysis of the velocity field of CMEs using optical flow methods. Astrophys. J., 652, 1747–1754, 2006, DOI: 10.1086/507943. [NASA ADS] [CrossRef]
  • Davis, C.J., J.A. Davies, M. Lockwood, A.P. Rouillard, C.J. Eyles, and R.A. Harrison. Stereoscopic imaging of an Earth-impacting solar coronal mass ejection: a major milestone for the STEREO mission. Geophys. Res. Lett., 36, 8102, 2009, DOI: 10.1029/2009GL038021. [CrossRef]
  • Domingo, V., B. Fleck, and A.I. Poland. The SOHO mission: an overview. Sol. Phys., 162, 1–2, 1995, DOI: 10.1007/BF00733425. [NASA ADS] [CrossRef]
  • Gallagher, P.T., C.A. Young, J.P. Byrne, and R.T.J. McAteer. Coronal mass ejection detection using wavelets, curvelets and ridgelets: applications for space weather monitoring. Adv. Space Res., 47, 2118–2126, 2011, DOI: 10.1016/j.asr.2010.03.028. [NASA ADS] [CrossRef]
  • Gopalswamy, N., S. Yashiro, G. Michalek, G. Stenborg, A. Vourlidas, S. Freeland, and R. Howard. The SOHO/LASCO CME catalog. Earth Moon and Planets, 104, 295–313, 2009, DOI: 10.1007/s11038-008-9282-7. [NASA ADS] [CrossRef]
  • Goussies, N.A., M.E. Mejail, J. Jacobo, and G. Stenborg. Detection and tracking of coronal mass ejections based on supervised segmentation and level set. Pattern Recognit. Lett., 31 (6), 496–501, 2010. [CrossRef]
  • Hough, P.V.C. A method and means for recognizing complex patterns. US Patent: 3,069,654, 1962.
  • Howard, R.A., J.D. Moses, A. Vourlidas, J.S. Newmark, D.G. Socker, et al. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev., 136, 67–115, 2008, DOI: 10.1007/s11214-008-9341-4. [NASA ADS] [CrossRef]
  • Howard, T.A., and S.J. Tappin. Statistical survey of earthbound interplanetary shocks, associated coronal mass ejections and their space weather consequences. Astron. Astrophys., 440, 373–383, 2005, DOI: 10.1051/0004-6361:20053109. [NASA ADS] [CrossRef] [EDP Sciences]
  • Hundhausen, A.J. Sizes and locations of coronal mass ejections – SMM observations from 1980 and 1984–1989. J. Geophys. Res., 98, 13177, 1993, DOI: 10.1029/93JA00157. [CrossRef]
  • Illing, R.M.E., and A.J. Hundhausen. Observation of a coronal transient from 1.2 to 6 solar radii. J. Geophys. Res., 90, 275–282, 1985, DOI: 10.1029/JA090iA01p00275. [NASA ADS] [CrossRef]
  • Kilpua, E.K.J., J. Pomoell, A. Vourlidas, R. Vainio, J. Luhmann, Y. Li, P. Schroeder, A.B. Galvin, and K. Simunac. STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period. Ann. Geophys., 27 (12), 4491–4503, 2009. [CrossRef]
  • Koomen, M.J., C.R. Detwiler, G.E. Brueckner, H.W. Cooper, and R. Tousey. White light coronagraph in OSO-7. Appl. Opt., 14, 743–751, 1975. [CrossRef]
  • Liu, Y.D., J.G. Luhmann, P. Kajdič, E.K.J. Kilpua, N. Lugaz, et al. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nature Communications, 5, 3481, 2014, DOI: 10.1038/ncomms4481.
  • Lugaz, N., and P. Kintner. Effect of solar wind drag on the determination of the properties of coronal mass ejections from Heliospheric images. Sol. Phys., 285, 281–294, 2013, DOI: 10.1007/s11207-012-9948-1. [CrossRef]
  • MacQueen, R.M., A. Csoeke-Poeckh, E. Hildner, L. House, R. Reynolds, A. Stanger, H. Tepoel, and W. Wagner. The high altitude observatory coronagraph/polarimeter on the solar maximum mission. Sol. Phys., 65, 91–107, 1980, DOI: 10.1007/BF00151386. [CrossRef]
  • Morgan, H., J.P. Byrne, and S.R. Habbal. Automatically detecting and tracking coronal mass ejections. I. Separation of dynamic and quiescent components in coronagraph images. Astrophys. J., 752, 144, 2012, DOI: 10.1088/0004-637X/752/2/144. [NASA ADS] [CrossRef]
  • Olmedo, O., J. Zhang, H. Wechsler, A. Poland, and K. Borne. Automatic detection and tracking of coronal mass ejections in coronagraph time series. Sol. Phys., 248, 485–499, 2008, DOI: 10.1007/s11207-007-9104-5. [CrossRef]
  • Plunkett, S.P., B.J. Thompson, O.C. St. Cyr, and R.A. Howard. Solar source regions of coronal mass ejections and their geomagnetic effects. J. Atmos. Sol. Terr. Phys., 63, 389–402, 2001, DOI: 10.1016/S1364-6826(00)00166-8. [CrossRef]
  • Pulkkinen, T. Space weather: terrestrial perspective. Living Rev. Sol. Phys., 4, 1, 2007.
  • Robbrecht, E., and D. Berghmans. Automated recognition of coronal mass ejections (CMEs) in near-real time data. Astron. Astrophys., 425, 1097–1106, 2004, DOI: 10.1051/0004-6361:20041302. [NASA ADS] [CrossRef] [EDP Sciences]
  • Savitzky, A., and M. Golay. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., 36, 1627–1639, 1964. [NASA ADS] [CrossRef]
  • Schwenn, R., A. dal Lago, E. Huttunen, and W.D. Gonzalez. The association of coronal mass ejections with their effects near the Earth. Ann. Geophys., 23, 1033–1059, 2005. [NASA ADS] [CrossRef]
  • Sheeley Jr., N.R., D.J. Michels, R.A. Howard, and M.J. Koomen. Initial observations with the SOLWIND coronagraph. Astrophys. J. Lett., 237, L99–L101, 1980, DOI: 10.1086/183243. [CrossRef]
  • St. Cyr, O.C., S.P. Plunkett, D.J. Michels, S.E. Paswaters, M.J. Koomen, et al. Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J. Geophys. Res., 105, 18169–18186, 2000, DOI: 10.1029/1999JA000381. [NASA ADS] [CrossRef]
  • Stenborg, G., and P.J. Cobelli. A wavelet packets equalization technique to reveal the multiple spatial scale nature of coronal structures. Astron. Astrophys., 398, 1185–1193, 2003, DOI: 10.1051/0004-6361:20021687. [NASA ADS] [CrossRef] [EDP Sciences]
  • Webb, D.F., and T.A. Howard. Coronal mass ejections: observations. Living Rev. Sol. Phys., 9, 3, 2012.
  • Yashiro, S., N. Gopalswamy, G. Michalek, O.C. St. Cyr, S.P. Plunkett, N.B. Rich, and R.A. Howard. A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. [Space Phys.], 109, 7105, 2004, DOI: 10.1029/2003JA010282. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.