Open Access
Review
Issue
J. Space Weather Space Clim.
Volume 6, 2016
Article Number A31
Number of page(s) 56
DOI https://doi.org/10.1051/swsc/2016024
Published online 02 August 2016
  • Abel, B., and R.M. Thorne. Relativistic charged particle precipitation into Jupiter’s sub-auroral atmosphere. Icarus, 166, 311–319, 2003, DOI: 10.1016/j.icarus.2003.08.017. [CrossRef]
  • Acuña, M.H., J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, et al. Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment. Science, 284 (5415), 790–793, 1999, DOI: 10.1126/science.284.5415.790. [NASA ADS] [CrossRef] [PubMed]
  • Akasofu, S.I. Auroral substorms as an electrical discharge phenomenon. PEPS, 2, 20, 2015, DOI: 10.1186/s40645-015-0050-9.
  • Alexeev, I.I., E.S. Belenkaya, J.A. Slavin, H. Korth, B.J. Anderson, et al. Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys. Icarus, 209 (1), 23–39, 2010. [CrossRef]
  • Ambrosi, R. European space nuclear power systems: enabing technology for space exploration missions, in: “Uranus beyond Voyager 2” Workshop, Meudon, France, 16–18 Sept., 2013.
  • Andersen, V. Observations of cosmic ray modulation with MARIE. BAAS, 1, 38, 2006.
  • Anderson, B.J., C.L. Johnson, H. Korth, M.E. Purucker, R.M. Winslow, et al. The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 1859–1862, 2011a. [NASA ADS] [CrossRef]
  • Anderson, B.J., J.A. Slavin, H. Korth, S.A. Boardsen, T.H. Zurbuchen, J.M. Raines, G. Gloeckler, R.L. McNutt, and S.C. Solomon. The dayside magnetospheric boundary layer at Mercury. Planet. Space Sci., 59 (15), 2037–2050, 2011b. [CrossRef]
  • André, N., M. Blanc, S. Maurice, P. Schippers, E. Pallier, et al. Identification of Saturn’s magnetospheric regions and associated plasma processes: synopsis of Cassini observations during orbit insertion. Rev. Geophys., 46, RG4008, 2008, DOI: 10.1029/2007RG000238.
  • Andriopoulou, M., E. Roussos, N. Krupp, C. Paranicas, M. Thomsen, S. Krimigis, M.K. Dougherty, and K.-H. Glassmeier. Spatial and temporal dependence of the convective electric field in Saturn’s inner magnetosphere. Icarus, 229, 57–70, 2014, DOI: 10.1016/j.icarus.2013.10.028. [CrossRef]
  • Aplin, K.L. Atmospheric electrification in the Solar System. Surv. Geophys., 27, 63–108, 2006, DOI: 10.1007/s10712-005-0642-9. [CrossRef]
  • Aplin, K.L. Electrifying atmospheres: charging, ionisation and lightning in the Solar System and beyond, in SpringerBriefs in Astronomy, Springer, Netherlands, Dordrecht, 2013, DOI: 10.1007/978-94-007-6633-4. [CrossRef]
  • Araki, T., S. Fujitani, M. Emoto, K. Yumoto, K. Shiokawa, et al. Anomalous sudden commencement on March 24, 1991. J. Geophys. Res., 102 (A7), 14075–14086, 1997, DOI: 10.1029/96JA03637. [CrossRef]
  • Arge, C.N., and V.J. Pizzo. Improvement in the prediction of solar wind conditions using near‐real time solar magnetic field updates. J. Geophys. Res. [Space Phys.], 105 (A5), 10465–10479, 2000. [NASA ADS] [CrossRef]
  • Arge, C.N., J.G. Luhmann, D. Odstrcil, C.J. Schrijver, and Y. Li. Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Sol. Terr. Phys., 66 (15), 1295–1309, 2004. [NASA ADS] [CrossRef]
  • Arridge, C.S., C.B. Agnor, N. André, K.H. Baines, L.N. Fletcher, et al. Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets. Exp. Agric., 33, 753–791, 2012, DOI: 10.1007/s10686-011-9251-4.
  • Arridge, C.S., N. Achilleos, J. Agarwal, C.B. Agnor, R. Ambrosi, et al. The science case for an orbital mission to Uranus: exploring the origins and evolution of ice giant planets. Planet. Space Sci., 104, 122–140, 2014, DOI: 10.1016/j.pss.2014.08.009. [CrossRef]
  • Badman, S.V., E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. GeéRard, D. Grodent, and S.E. Milan. Open flux estimates in Saturn’s magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates. J. Geophys. Res. [Space Phys.], 110, A11216, 2005, DOI: 10.1029/2005JA011240. [CrossRef]
  • Badman, S.V., N. Achilleos, K.H. Baines, R.H. Brown, E.J. Bunce, M.K. Dougherty, H. Melin, J.D. Nichols, and T. Stallard. Location of Saturn’s northern infrared aurora determined from Cassini VIMS images. Geophys. Res. Lett., 38, L03102, 2011, DOI: 10.1029/2010GL046193. [CrossRef]
  • Badman, S.V., N. Achilleos, C.S. Arridge, K.H. Baines, R.H. Brown, et al. Cassini observations of ion and electron beams at Saturn and their relationship to infrared auroral arcs. J. Geophys. Res. [Space Phys.], 117, A01211, 2012, DOI: 10.1029/2011JA017222.
  • Badman, S.V., A. Masters, H. Hasegawa, M. Fujimoto, A. Radioti, D. Grodent, N. Sergis, M.K. Dougherty, and A.J. Coates. Bursty magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett., 40, 1027–1031, 2013, DOI: 10.1002/grl.50199. [CrossRef]
  • Badman, S.V., C.M. Jackman, J.D. Nichols, J.T. Clarke, and J.-C. Gérard. Open flux in Saturn’s magnetosphere. Icarus, 231, 137–145, 2014, DOI: 10.1016/j.icarus.2013.12.004. [CrossRef]
  • Badman, S.V., G. Branduardi-Raymont, M. Galand, S.L.G. Hess, N. Krupp, L. Lamy, H. Melin, and C. Tao. Auroral processes at the Giant planets: energy deposition, emission mechanisms, morphology and spectra. Space Sci. Rev., 187, 99–179, 2015, DOI: 10.1007/s11214-014-0042-x. [CrossRef]
  • Bagenal, F. Giant planet magnetospheres. Annu. Rev. Earth Planet. Sci., 20, 289–328, 1992. [NASA ADS] [CrossRef]
  • Bagenal, F. Planetary Magnetospheres. In: T.D. Oswalt, L.M. French, and P. Kalas, Editors. Planets, Stars and Stellar Systems, Springer Science+Business Media, Dordrecht, 251, ISBN: 978-94-007-5605-2, 2013. [CrossRef]
  • Bagenal, F., A. Adriani, F. Allegrini, S.J. Bolton, B. Bonfond, et al. Magnetospheric science objectives of the JUNO mission. Space Sci. Rev., 1–69, 2014, DOI: 10.1007/s11214-014-0036-8.
  • Bagenal, F., E. Sidrow, R.J. Wilson, T.A. Cassidy, V. Dols, F.J. Crary, A.J. Steffl, P.A. Delamere, W.S. Kurth, and W.R. Paterson. Plasma conditions at Europa’s orbit. Icarus, 261, 1–13, 2015, DOI: 10.1016/j.icarus.2015.07.036. [CrossRef]
  • Baker, D.N., T.I. Pulkkinen, J. Büchner, and A.J. Klimas. Substorms: a global instability of the magnetosphere-ionosphere system. J. Geophys. Res., 104, 14601–14612, 1999. [CrossRef]
  • Baker, D.N., G. Poh, D. Odstrcil, N. Arge, M. Benna, et al. Solar wind forcing at Mercury: WSA-ENLIL model results. J. Geophys. Res. [Space Phys.], 118, 45–57, 2013, DOI: 10.1029/2012JA018064. [CrossRef]
  • Baker, V.R., R.G. Strom, J.M. Dohm, V.C. Gulick, J.S. Kargel, G. Komatsu, G.G. Ori, and J.W. Rice. Mars’ Oceanus Borealis, ancient glaciers, and the MEGAOUTFLO hypothesis. Lunar and Planetary Institute Science Conference Abstracts, 31, 2000.
  • Ballester, G.E. Magnetospheric interactions in the major planets. In: W. Wamsteker, R. Gonzalez Riestra, and B. Harris, Editors. Ultraviolet Astrophysics Beyond the IUE Final Archive, 413, ESA Special Publication, 21, 1998.
  • Bampasidis, G., A. Coustenis, R.K. Achterberg, S. Vinatier, P. Lavvas, et al. Thermal and chemical structure variations in Titan’s stratosphere during the Cassini mission. Astrophys. J., 760, 144, 2012, DOI: 10.1088/0004-637X/760/2/144. [CrossRef]
  • Baron, R.L., T. Owen, J.E.P. Connerney, T. Satoh, and J. Harrington. Solar wind control of Jupiter’s H+3 auroras. Icarus, 120, 437–442, 1996, DOI: 10.1006/icar.1996.0063. [CrossRef]
  • Barth, C.A., C.W. Hord, A.I.F. Stewart, W.R. Pryor, K.E. Simmons, W.E. McClintock, J.M. Ajello, K.L. Naviaux, and J.J. Aiello. Galileo ultraviolet spectrometer observations of atomic hydrogen in the atmosphere of Ganymede. Geophys. Res. Lett., 24, 2147–2150, 1997. [CrossRef]
  • Barthelemy, M., and G. Cessateur. Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux. J. Space Weather Space Clim., 4 (27), A35, 2014, DOI: 10.1051/swsc/2014033. [NASA ADS] [CrossRef] [EDP Sciences]
  • Belcher, J.W., H.S. Bridge, B. Coppi, G.S. Gordon Jr., A.J. Lazarus, et al. Plasma observations near Neptune – initial results from Voyager 2. Science, 246, 1478–1483, 1989, DOI: 10.1126/science.246.4936.1478. [CrossRef]
  • Belov, A., E. Eroshenko, H. Mavromichalaki, C. Plainaki, and V. Yanke. Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956. Ann. Geophys., 23, 2281, 2005. [CrossRef]
  • Benkhoff, J., J. van Casteren, H. Hayakawa, M. Fujimoto, H. Laakso, M. Novara, P. Ferri, H.R. Middleton, and R. Ziethe. BepiColombo-Comprehensive exploration of Mercury: mission overview and science goals. Planet. Space Sci., 58 (1–2), 2–20, 2010, DOI: 10.1016/j.pss.2009.09.020. [CrossRef]
  • Berezhnoy, A.A., and B.A. Klumov. Impacts as a source of the atmosphere on Mercury. Icarus, 195, 511–522, 2008. [NASA ADS] [CrossRef]
  • Bertaux, J.L., F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, et al. Discovery of an aurora on Mars. Nature, 435 (7043), 790–794, 2005. [CrossRef]
  • Bertucci, C., D.C. Hamilton, W.S. Kurth, G.B. Hospodarsky, D.G. Mitchell, N.J.T. Edberg, N. Sergis, and M.K. Dougherty. Titan interaction with the supersonic solar wind: Cassini T96 observations. In: AGU Fall Meeting Abstracts, 4322, 2014.
  • Bertucci, C., D.C. Hamilton, W.S. Kurth, G. Hospodarsky, D. Mitchell, N. Sergis, N.J.T. Edberg, and M.K. Dougherty. Titan’s interaction with the supersonic solar wind. Geophys. Res. Lett., 42, 193–200, 2015, DOI: 10.1002/2014GL062106. [CrossRef]
  • Bishop, J., S.K. Atreya, P.N. Romani, G.S. Orton, B.R. Sandel, and R.V. Yelle. The middle and upper atmosphere of Neptune. In: D.P. Cruikshank, M.S. Matthews, and A.M. Schumann, Editors. Neptune and Triton, University of Arizona Pub., USA, 427–487, 1995.
  • Blake, J.B., H.H. Hilton, and S.H. Margolis. On the injection of cosmic ray secondaries into the inner Saturnian magnetosphere. I – Protons from the CRAND process, J. Geophys. Res. [Space Phys.], 88, 803–807, 1983, DOI: 10.1029/JA088iA02p00803. [CrossRef]
  • Blanc, M., S. Bolton, J. Bradley, M. Burton, T.E. Cravens, et al. Magnetospheric and plasma science with Cassini-Huygens. Space Sci. Rev., 104, 253–346, 2002, DOI: 10.1023/A:1023605110711. [CrossRef]
  • Blanc, M., D.J. Andrews, A.J. Coates, D.C. Hamilton, C.M. Jackman, et al. Saturn plasma sources and associated transport processes. Space Sci. Rev., 192 (1), 237–283, 2015, DOI: 10.1007/s11214-015-0172-9. [CrossRef]
  • Bolton, S.J., S. Gulkis, M.J. Klein, I. de Pater, and T.J. Thompson. Correlation studies between solar wind parameters and the decimetric radio emission from Jupiter. J. Geophys. Res. [Space Phys.], 94, 121–128, 1989, DOI: 10.1029/JA094iA01p00121. [NASA ADS] [CrossRef]
  • Bolton, S.J., M. Janssen, R. Thorne, S. Levin, M. Klein, et al. Ultra-relativistic electrons in Jupiter’s radiation belts. Nature, 415, 987–991, 2002. [NASA ADS] [CrossRef]
  • Bolton, S.J., R.M. Thorne, S. Bourdarie, I. de Pater, and B. Mauk. Jupiter’s inner radiation belts. In: F. Bagenal, T. Dowling, and W. McKinnon, Editors. Jupiter: The Planet, Satellites and Magnetosphere, Cambridge Univ. Press, 671–688, 2004.
  • Bolton, S.J., F. Bagenal, M. Blanc, T. Cassidy, E. Chané, et al. Jupiter’s magnetosphere: plasma sources and transport. Space Sci. Rev., 192 (1–4), 209–236, 2015, DOI: 10.1007/s11214-015-0184-5. [CrossRef]
  • Bombardieri, D.J., M.L. Duldig, J.E. Humble, and K.J. Michael. An improved model for relativistic solar proton acceleration applied to the 2005 January 20 and earlier events. Astrophys. J., 682, 1315–1327, 2008. [CrossRef]
  • Bonfond, B., D. Grodent, J.-C. Gérard, A. Radioti, J. Saur, and S. Jacobsen. UV Io footprint leading spot: a key feature for understanding the UV Io footprint multiplicity? Geophys. Res. Lett., 35, L05107, 2008, DOI: 10.1029/2007GL032418. [NASA ADS] [CrossRef]
  • Bonfond, B., M.F. Vogt, J.-C. Gérard, D. Grodent, A. Radioti, and V. Coumans. Quasi-periodic polar flares at Jupiter: a signature of pulsed dayside reconnections? Geophys. Res. Lett., 38, L02104, 2011, DOI: 10.1029/2010GL045981. [CrossRef]
  • Borucki, W., Z. Levin, R. Whitten, and R. Keesee. Predicted electrical conductivity between 0 and 80 km in the Venusian atmosphere. Icarus, 321, 302–321, 1982. [CrossRef]
  • Borucki, W.J. Comparison of Venusian lightning observations. Icarus, 52, 354–364, 1982, DOI: 10.1016/0019-1035(82)90118-X. [CrossRef]
  • Boudjemai, A., R. Hocine, and S. Guerionne. Space Environment Effect on Earth Observation Satellite Instruments. In: Recent Advances in Space Technologies (RAST), 2015 7th International Conference on, IEEE, 627–634, ISBN: 978-1-4673-7760-7, 2015, DOI: 10.1109/RAST.2015.7208419.
  • Bougher, S.W., T.E. Cravens, J. Grebowsky, and J. Luhmann. The aeronomy of Mars: characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape. Space Sci. Rev., 195, 423–456, 2015a, DOI: 10.1007/s11214-014-0053-7. [CrossRef]
  • Bougher, S.W., D.J. Pawlowski, J.M. Bell, S. Nelli, T. McDunn, J.R. Murphy, M. Chizek, and A.J. Ridley, Mars global ionosphere-thermosphere model (MGITM): solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. J. Geophys. Res. [Planets], 120, 311–342, 2015b. [CrossRef]
  • Brace, L.H., H.A. Taylor, T.I. Gombosi, A.J. Kliore, W.C. Knudsen, and A.F. Nagy. The ionosphere of Venus – observations and their interpretation in Venus. University of Arizona Press, Tucson, USA, 779–840, 1983.
  • Brain, D.A., M. Bruce, and R. Jakosky. Atmospheric loss since the onset of the Martian geologic record: combined role of impact erosion and sputtering. J. Geophys. Res., 103, 22689–22694, 1998. [CrossRef]
  • Brain, D.A., F. Bagenal, M.H. Acuña, and J.E.P. Connerney. Martian magnetic morphology: contributions from the solar wind and crust. J. Geophys. Res., 108 (A12), 1424, 2003, DOI: 10.1029/2002JA009482. [CrossRef]
  • Brain, D.A., S.W. Bougher, S.H. Brecht, G.M. Chanteur, S. Curry, et al. Comparison of global models for the escape of Martian atmospheric plasma. In: AGU Fall Meeting Abstracts, 1969, 2012.
  • Brandt, P.C., S. Barabash, E.C. Roelof, and C.J. Chase. Energetic neutral atom imaging at low altitudes from the Swedish microsatellite Astrid: observations at low (≤10 keV) energies. J. Geophys. Res., 106, 24663–24674, 2001. [CrossRef]
  • Brecht, A.S., and S.W. Bougher. Dayside thermal structure of Venus’ upper atmosphere characterized by a global model. J. Geophys. Res., 117, E08002, 2012, DOI: 10.1029/2012JE004079. [NASA ADS] [CrossRef]
  • Brice, N., and T.R. McDonough. Jupiter’s radiation belts. Icarus, 18, 206–219, 1973, DOI: 10.1016/0019-1035(73)90204-2. [NASA ADS] [CrossRef]
  • Broadfoot, A.L., S.K. Atreya, J.L. Bertaux, J.E. Blamont, A.J. Dessler, et al. Ultraviolet spectrometer observations of Neptune and Triton. Science, 246, 1459–1466, 1989, DOI: 10.1126/science.246.4936.1459. [NASA ADS] [CrossRef] [PubMed]
  • Brown, R.H., R.N. Clark, B.J. Buratti, D.P. Cruikshank, J.W. Barnes, et al. Composition and physical properties of Enceladus’ surface. Science, 311, 1425–1428, 2006, DOI: 10.1126/science.1121031. [NASA ADS] [CrossRef] [PubMed]
  • Bunce, E.J., S.W.H. Cowley, and T.K. Yeoman. Jovian cusp processes: implications for the polar aurora. J. Geophys. Res. [Space Phys.], 109, A09S13, 2004, DOI: 10.1029/2003JA010280. [CrossRef]
  • Bunce, E.J., S.W.H. Cowley, and S.E. Milan. Interplanetary magnetic field control of Saturn’s polar cusp aurora. Ann. Geophys., 23, 1405–1431, 2005, DOI: 10.5194/angeo-23-1405-2005. [CrossRef]
  • Bunce, E.J., C.S. Arridge, S.W.H. Cowley, and M.K. Dougherty. Magnetic field structure of Saturn’s dayside magnetosphere and its mapping to the ionosphere: results from ring current modeling. J. Geophys. Res. [Space Phys.], 113, A02207, 2008, DOI: 10.1029/2007JA012538.
  • Buratti, B.J., K. Soderlund, J. Bauer, J.A. Mosher, M.D. Hicks, et al. Infrared (0.83–5.1 μm) photometry of Phoebe from the Cassini visual infrared mapping spectrometer. Icarus, 193, 309–322, 2008, DOI: 10.1016/j.icarus.2007.09.014. [NASA ADS] [CrossRef]
  • Burger, M.H., R.M. Killen, W.E. McClintock, A.W. Merkel, R.J. Vervack, T.A. Cassidy, and M. Sarantos. Seasonal variations in Mercury’s dayside calcium exosphere. Icarus, 238, 51–58, 2014. [CrossRef]
  • Burke, B.F., and K.L. Franklin. Observations of a Variable radio source associated with the planet Jupiter. J. Geophys. Res. [Space Phys.], 60, 213–217, 1955, DOI: 10.1029/JZ060i002p00213. [NASA ADS] [CrossRef]
  • Burlaga, L.F. Magnetic fields and plasmas in the inner heliosphere: helios results. Planet. Space Sci., 49 (14–15), 1619–1627, 2001, [CrossRef]
  • Calvin, W.M., R.N. Clark, R.H. Brown, and J.R. Spencer. Spectra of the icy Galilean satellites from 0.2 to 5 μm: a compilation, new observations, and a recent summary. J. Geophys. Res., 100, 19041–19048, 1995. [CrossRef]
  • Carlson, R.W. A tenuous carbon dioxide atmosphere on Jupiter’s moon Callisto. Science, 283, 820–821, 1999. [CrossRef]
  • Carr, M.H., and J.W. Head. Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res. [Planets], 108, 5042, 2003. [CrossRef]
  • Cassidy, T.A., and R.E. Johnson. Collisional spreading of Enceladus’ neutral cloud. Icarus, 209, 696–703, 2010, DOI: 10.1016/j.icarus.2010.04.010. [NASA ADS] [CrossRef]
  • Cassidy, T.A., R.E. Johnson, P.E. Geissler, and F. Leblanc. Simulation of Na D emission near Europa during eclipse. J. Geophys. Res. [Space Phys.], 113, E02005, 2008, DOI: 10.1029/2007JE002955. [CrossRef]
  • Cassidy, T., P. Coll, F. Raulin, R.W. Carlson, R.E. Johnson, M.J. Loeffler, K.P. Hand, and R.A. Baragiola. Radiolysis and photolysis of icy satellite surfaces: experiments and theory. Space Sci. Rev., 153, 299–315, 2010, DOI: 10.1007/s11214-009-9625-3. [CrossRef]
  • Cassidy, T.A., C.P. Paranicas, J.H. Shirley, J.B. Dalton III, B.D. Teolis, R.E. Johnson, L. Kamp, and A.R. Hendrix. Magnetospheric ion sputtering and water ice grain size at Europa. Planet. Space Sci., 77, 64–73, 2013, DOI: 10.1016/j.pss.2012.07.008. [NASA ADS] [CrossRef]
  • Cassidy, T.A., A.W. Merkel, M.H. Burger, M. Sarantos, R.M. Killen, W.E. McClintock, and R.J. Vervack. Mercury’s seasonal sodium exosphere: MESSENGER orbital observations. Icarus, 248, 547–559, 2015, DOI: 10.1016/j.icarus.2014.10.037. [CrossRef]
  • Chamberlain, J.W. Planetary coronae and atmospheric evaporation, Planet. Space Sci., 11, 901–960, 1963. [NASA ADS] [CrossRef]
  • Chané, E., J. Saur, and S. Poedts. Modeling Jupiter’s magnetosphere: influence of the internal sources. J. Geophys. Res. [Space Phys], 118, 2157–2172, 2013, DOI: 10.1002/jgra.50258. [CrossRef]
  • Chappell, C.R. The role of the ionosphere in providing plasma to the terrestrial magnetosphere – an historical overview. Space Sci. Rev., 192 (1–4), 5–25, 2015. [CrossRef]
  • Chassefiere, E., and F. Leblanc. Mars atmospheric escape and evolution; interaction with the solar wind. Planet. Space Sci., 52, 1039–1058, 2004. [CrossRef]
  • Chaufray, J.Y., R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, and J.G. Luhmann. Mars solar wind interaction: formation of the Martian corona and atmospheric loss to space. J. Geophys. Res. [Planets], 112, 9009, 2007. [CrossRef]
  • Cheng, A.F., S.M. Krimigis, B.H. Mauk, E.P. Keath, C.G. Maclennan, L.J. Lanzerotti, M.T. Paonessa, and T.P. Armstrong. Energetic ion and electron phase space densities in the magnetosphere of Uranus. J. Geophys. Res. [Space Phys.], 92, 15315–15328, 1987. [CrossRef]
  • Cheng, A.F., S.M. Krimigis, and L.J. Lanzerotti. Energetic particles at Uranus. In: J.T. Bergstralh, E.D. Miner, and M.S. Matthews, Editors. Uranus, Univ. of Arizona Press, USA, 831–893, 1991.
  • Clark, R.N., F.P. Fanale, and M.J. Gaffey. Surface composition of satellites. In: J. Burns, and M.S. Matthews, Editors. Satellites, University of Arizona Press, Tucson, 437–491, 1986.
  • Clark, R.N., R.H. Brown, R. Jaumann, D.P. Cruikshank, R.M. Nelson, et al. Compositional maps of Saturn’s moon Phoebe from imaging spectroscopy. Nature, 435, 66–69, 2005, DOI: 10.1038/nature03558. [NASA ADS] [CrossRef] [PubMed]
  • Clark, R.N., J.M. Curchin, R. Jaumann, D.P. Cruikshank, R.H. Brown, et al. Compositional mapping of Saturn’s satellite Dione with Cassini VIMS and implications of dark material in the Saturn system. Icarus, 193, 372–386, 2008, DOI: 10.1016/j.icarus.2007.08.035. [NASA ADS] [CrossRef]
  • Clark, R.N., D.P. Cruikshank, R. Jaumann, R.H. Brown, J.M. Curchin, et al. The composition of Iapetus: mapping results from Cassini VIMS. Icarus, 218, 831–860, 2012, DOI: 10.1016/j.icarus.2012.01.008. [NASA ADS] [CrossRef]
  • Clarke, J.T., M.K. Hudson, and Y.L. Yung. The excitation of the far ultraviolet electroglow emissions on Uranus, Saturn, and Jupiter. J. Geophys. Res. [Space Phys.], 92 (A13), 15139–15147, 1987. [CrossRef]
  • Clarke, J.T., J. Ajello, G. Ballester, L. Ben Jaffel, J. Connerney, et al. Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature, 415, 997–1000, 2002. [NASA ADS] [CrossRef] [PubMed]
  • Clarke, J.T., J. Nichols, J.C. Gérard, D. Grodent, K.C. Hansen, et al. Response of Jupiter’s and Saturn’s auroral activity to the solar wind. J. Geophys. Res. [Space Phys.], 114, A05210, 2009, DOI: 10.1029/2008JA013694.
  • Clifford, S.M., and T.J. Parker. The evolution of the Martian hydrosphere. AGU Fall Meeting Abstracts, 2001.
  • Cliver, E.W. The unusual relativistic solar proton events of 1979 August 21 and 1981 May 10. Astrophys. J., 639, 1206–1217, 2006, DOI: 10.1086/499765. [CrossRef]
  • Coates, A.J., H.J. McAndrews, A.M. Rymer, D.T. Young, F.J. Crary, et al. Plasma electrons above Saturn’s main rings: CAPS observations. Geophys. Res. Lett., 32, L14S09, 2005, DOI: 10.1029/2005GL022694. [CrossRef]
  • Coates, A.J., F.J. Crary, G.R. Lewis, D.T. Young, J.H. Waite, and E.C. Sittler. Discovery of heavy negative ions in Titan’s ionosphere. Geophys. Res. Lett., 34, L22103, 2007, DOI: 10.1029/2007GL030978. [CrossRef]
  • Coates, A.J., A. Wellbrock, G.R. Lewis, G.H. Jones, D.T. Young, F.J. Crary, and J.H. Waite. Heavy negative ions in Titan’s ionosphere: altitude and latitude dependence. Planet. Space Sci., 57 (14–15), 1866–1871, 2009. [CrossRef]
  • Coates, A.J., S.M.E. Tsang, A. Wellbrock, R.A. Frahm, J.D. Winningham, S. Barabash, R. Lundin, D.T. Young, and F.J. Crary. Ionospheric photoelectrons: comparing Venus, Earth, Mars and Titan. Planet. Space Sci., 59 (10), 1019–1027, 2011. [CrossRef]
  • Coates, A.J., A. Wellbrock, R.A. Frahm, J.D. Winningham, A. Fedorov, S. Barabash, and R. Lundin. Distant ionospheric photoelectron energy peak observations at Venus. Planet. Space Sci., 113, 378–384, 2015. [CrossRef]
  • Connerney, J.E.P., M.H. Acuña, and N.F. Ness. Saturn’s ring current and inner magnetosphere. Nature, 292, 724–726, 1981. [CrossRef]
  • Connerney, J.E.P., M.H. Acuña, and N.F. Ness. Currents in Saturn’s magnetosphere, J. Geophys. Res., 88, (A11), 8779–8789, 1983. [CrossRef]
  • Connerney, J.E.P., M.H. Acuña, and N.F. Ness. The magnetic field of Neptune. J. Geophys. Res. [Space Phys.], 96, 19023–19042, 1991. [CrossRef]
  • Cooper, J.F. Nuclear cascades in Saturn’s rings – cosmic ray albedo neutron decay and origins of trapped protons in the inner magnetosphere. J. Geophys. Res. [Space Phys.], 88, 3945–3954, 1983, DOI: 10.1029/JA088iA05p03945. [CrossRef]
  • Coradini, A., F. Tosi, A.I. Gavrishin, F. Capaccioni, P. Cerroni, et al. Identification of spectral units on Phoebe. Icarus, 193, 233–251, 2008, DOI: 10.1016/j.icarus.2007.07.023. [CrossRef]
  • Coradini, A., D. Turrini, C. Federico, and G. Magni. Vesta and Ceres: crossing the history of the Solar System. Space Sci. Rev., 163, 25–40, 2011. [CrossRef]
  • Coustenis, A., and F.W. Taylor. Titan: exploring an earthlike world, 2nd edn., World Scientific Publishing Co, USA, 2008. [CrossRef]
  • Coustenis, A., A. Salama, E. Lellouch, T. Encrenaz, G.L. Bjoraker, R.E. Samuelson, T. de Graauw, H. Feuchtgruber, and M.F. Kessler. Evidence for water vapor in Titan’s atmosphere from ISO/SWS data. A&A, 336, L85–L89, 1998.
  • Coustenis, A., T. Tokano, M.H. Burger, T.A. Cassidy, R.M. Lopes, R.D. Lorenz, K.D. Retherford, and G. Schubert. Atmospheres/exospheres characteristics of icy satellites. Space Sci. Rev., 153, 155–184, 2010. [CrossRef]
  • Coustenis, A., D.E. Jennings, R.K. Achterbergh, G. Bampasidis, P. Lavvas, C.A. Nixon, N.A. Teanby, C.M. Anderson, and F.M. Flasar. Titan’s temporal evolution in stratospheric trace gases near the poles. Icarus, 270, 409–420, 2016, DOI: 10.1016/j.icarus.2015.08.027. [CrossRef]
  • Cowley, S., E. Bunce, and R. Prangé. Saturn’s polar ionospheric flows and their relation to the main auroral oval. Ann. Geophys., 22, 1379–1394, 2004, DOI: 10.5194/angeo-22-1379-2004. [CrossRef]
  • Cowley, S.W.H. Response of Uranus’ auroras to solar wind compressions at equinox. J. Geophys. Res. [Space Phys.], 118, 2897–2902, 2013, DOI: 10.1002/jgra.50323. [CrossRef]
  • Cowley, S.W.H., and E.J. Bunce. Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planet. Space Sci., 49, 1067–1088, 2001, DOI: 10.1016/S0032-0633(00)00167-7. [NASA ADS] [CrossRef]
  • Cowley, S.W.H., and E.J. Bunce. Corotation-driven magnetosphere-ionosphere coupling currents in Saturn’s magnetosphere and their relation to the auroras. Ann. Geophys., 21, 1691–1707, 2003, DOI: 10.5194/angeo-21-1691-2003. [CrossRef]
  • Cowley, S.W.H., S.V. Badman, E.J. Bunce, J.T. Clarke, J.-C. GéRard, D. Grodent, C.M. Jackman, S.E. Milan, and T.K. Yeoman. Reconnection in a rotation-dominated magnetosphere and its relation to Saturn’s auroral dynamics. J. Geophys. Res. [Space Phys.], 110, A02201, 2005, DOI: 10.1029/2004JA010796.
  • Cravens, T.E., I.P. Robertson, S.A. Ledvina, D. Mitchell, S.M. Krimigis, and J.H. Waite. Energetic ion precipitation at Titan. Geophys. Res. Lett., 35, L03103, 2008, DOI: 10.1029/2007GL032451. [NASA ADS] [CrossRef]
  • Cravens, T.E., R.L. McNutt, J.H. Waite, I.P. Robertson, J.G. Luhmann, W. Kasprzak, and W.-H. Ip. Plume ionosphere of Enceladus as seen by the Cassini ion and neutral mass spectrometer. Geophys. Res. Lett., 36, L08106, 2009, DOI: 10.1029/2009GL037811. [CrossRef]
  • Cruikshank, D.P., E. Wegryn, C.M. Dalle Ore, R.H. Brown, J.-P. Bibring, et al. Hydrocarbons on Saturn’s satellites Iapetus and Phoebe. Icarus, 193, 334–343, 2008, DOI: 10.1016/j.icarus.2007.04.036. [NASA ADS] [CrossRef]
  • Cruikshank, D.P., A.W. Meyer, R.H. Brown, R.N. Clark, R. Jaumann, et al. Carbon dioxide on the satellites of Saturn: results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale. Icarus, 206, 561–572, 2010, DOI: 10.1016/j.icarus.2009.07.012. [NASA ADS] [CrossRef]
  • Cui, J., R.V. Yelle, V. Vuitton, J.H. Waite Jr., W.T. Kasprzak, et al. Analysis of Titan’s neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements. Icarus, 200, 581–615, 2009a, DOI: 10.1016/j.icarus.2008.12.005. [NASA ADS] [CrossRef]
  • Cui, J., M. Galand, R.V. Yelle, V. Vuitton, J.-E. Wahlund, et al. Diurnal variations of Titan’s ionosphere. J. Geophys. Res., 114, A06310, 2009b, DOI: 10.1029/2009JA014228. [CrossRef]
  • Cunningham, N.J., J.R. Spencer, P.D. Feldman, D.F. Strobel, K. France, and S.N. Osterman. Detection of Callisto’s oxygen atmosphere with the Hubble Space Telescope. Icarus, 254, 178–189, 2015, DOI: 10.1016/j.icarus.2015.03.021. [CrossRef]
  • Dalton, B., D. Cruikshank, K. Stephan, T. McCord, A. Coustenis, R. Carlson, and A. Coradini. Chemical composition of icy satellite surfaces. Space Sci. Rev., 153, 113–154, 2010. [NASA ADS] [CrossRef]
  • Dandouras, I., P. Garnier, D.G. Mitchell, E.C. Roelof, P.C. Brandt, N. Krupp, and S.M. Krimigis. Titan’s exosphere and its interaction with Saturn’s magnetosphere. Philos. Trans. R. Soc. London: Ser. A, 367, 743–752, 2009, DOI: 10.1098/rsta.2008.0249. [CrossRef]
  • Dartnell, L.R. Ionizing radiation and life. Astrobiology, 11, 551–582, 2011, DOI: 10.1089/ast.2010.0528. [NASA ADS] [CrossRef]
  • Dartnell, L.R., L. Desorgher, J.M. Ward, and A.J. Coates. Martian sub-surface ionising radiation: biosignatures and geology. Biogeosciences, 4, 545–558, 2007a, DOI: 10.5194/bg-4-545-2007. [CrossRef]
  • Dartnell, L.R., L. Desorgher, J.M. Ward, and A.J. Coates. Modelling the surface and subsurface Martian radiation environment: implications for astrobiology. Geophys. Res. Lett., 34, L02207, 2007b, DOI: 10.1029/2006GL027494. [CrossRef]
  • Dartnell, L.R., S.J. Hunter, K.V. Lovell, A.J. Coates, and J.M. Ward. Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria. Astrobiology, 10, 717–732, 2010, DOI: 10.1089/ast.2009.0439. [CrossRef]
  • Dartnell, L.R., T.A. Nordheim, M.R. Patel, J.P. Mason, A.J. Coates, and G.H. Jones. Constraints on a potential aerial biosphere on Venus: I. Cosmic rays. Icarus, 257, 396–405, 2015. [CrossRef]
  • Decker, R.B., and A.F. Cheng. A model of Triton’s role in Neptune’s magnetosphere. J. Geophys. Res. [Space Phys.], 99, 19027, 1994, DOI: 10.1029/94JE01867. [CrossRef]
  • Delamere, P.A., and F. Bagenal. Magnetotail structure of the giant magnetospheres: implications of the viscous interaction with the solar wind. J. Geophys. Res. [Space Phys.], 118 (11), 7045–7053, 2013. [CrossRef]
  • Delamere, P.A., F. Bagenal, and A. Steffl. Radial variations in the Io plasma torus during the Cassini era. J. Geophys. Res. [Space Phys.], 110, A12223, 2005, DOI: 10.1029/2005JA011251. [CrossRef]
  • Delcourt, D.C., S. Grimald, F. Leblanc, J.-J. Berthelier, A. Millilo, A. Mura, S. Orsini, and T.E. Moore. A quantitative model of the planetary Na+ contribution to Mercury’s magnetosphere. Ann. Geophys., 21 (8), 1723–1736, 2003. [CrossRef]
  • DiBraccio, G.A., J.A. Slavin, S.A. Boardsen, B.J. Anderson, H. Korth, et al. MESSENGER observations of magnetopause structure and dynamics at Mercury. J. Geophys. Res. [Space Phys.], 118, 997–1008, 2013, DOI: 10.1002/jgra.50123. [CrossRef]
  • Dols, V.J., F. Bagenal, T.A. Cassidy, F.J. Crary, and P.A. Delamere. Europa’s atmospheric neutral escape: Importance of symmetrical O2 charge exchange. Icarus, 264, 387–397, 2016. [CrossRef]
  • Donahue, T.M., D.H. Grinspoon, R.E. Hartle, and R.R. Hodgee. Ion/neutral escape of hydrogen and deuterium: evolution of water. In: S.W. Bougher, D.M. Hunten, and R.J. Philips, Editors. Venus II – Geology, Geophysics, Atmosphere, and Solar Wind Environment, University of Arizona Press, Tuscon, 385–414, 1997.
  • Dorman, L. Cosmic Rays in Magnetospheres of the Earth and other Planets, 358, Springer Science & Business Media, Germany, 2009.
  • Dougherty, M.K., L.W. Esposito, and S.M. Krimigis. Saturn from Cassini-Huygens, Springer, Germany, 2009, DOI: 10.1007/978-1-4020-9217-6. [CrossRef]
  • Drossart, P., B. Bézard, S.K. Atreya, J. Bishop, J.H. Waite, and D. Boice. Thermal profiles in the auroral regions of Jupiter. J. Geophys. Res. [Planets], 98 (E10), 18803–18811, 1993. [CrossRef]
  • Drossart, P., G. Piccioni, J.-C. Gérard, M.A. Lopez-Valverde, A. Sanchez-Lavega, et al. A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express. Nature, 450, 641–645, 2007. [CrossRef]
  • Dubach, J., R. Whitten, and J. Sims. The lower ionosphere of Venus. Planet. Space Sci., 22, 525–536, 1974, DOI: 10.1016/0032-0633(74)90087-7. [CrossRef]
  • Dubinin, E., R. Modolo, M. Fraenz, J. Woch, G. Chanteur, et al. Plasma environment of Mars as observed by simultaneous MEX-ASPERA-3 and MEX-MARSIS observations. J. Geophys. Res. [Space Phys], 113, 10217, 2008.
  • Dudok de Wit, T., M. Kretzschmar, J. Lilensten, and T. Woods. Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett., 36, 10107, 2009, DOI: 10.1029/2009GL037825. [NASA ADS] [CrossRef]
  • Dungey, J.W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett., 6, 47–48, 1961, DOI: 10.1103/PhysRevLett.6.47. [NASA ADS] [CrossRef]
  • Dušík, Š., G. Granko, J. Šafránková, Z. Němeček, and K. Jelínek. IMF cone angle control of the magnetopause location: statistical study. Geophys. Res. Lett., 37, L19103, 2010, DOI: 10.1029/2010GL044965.
  • Duvall, A.L., C.G. Justus, and V.W. Keller. Global Reference Atmospheric Models for Aeroassist Applications. In: 3rd international planetary probe workshop (Anavyssos, Attiki, Greece), 27, 20060004756 (NASA Marshall Space Flight Center, Huntsville, USA), 2005.
  • Edberg, N.J.T., J.-E. Wahlund, K. Ågren, M.W. Morooka, R. Modolo, C. Bertucci, and M.K. Dougherty. Electron density and temperature measurements in the cold plasma environment of Titan: implications for atmospheric escape. Geophys. Res. Lett., 37, L20105, 2010, DOI: 10.1029/2010GL044544.
  • Elsner, R.F., N. Lugaz, J.H. Waite, T.E. Cravens, G.R. Gladstone, et al. Simultaneous Chandra X ray, Hubble Space Telescope ultraviolet, and Ulysses radio observations of Jupiter’s aurora. J. Geophys. Res. [Space Phys.], 110, A01207, 2005, DOI: 10.1029/2004JA010717. [CrossRef]
  • Eviatar, A., V.M. Vasyliunas, and D.A. Gurnett. The ionosphere of Ganymede. Planet. Space Sci., 49, 327–336, 2001, DOI: 10.1016/S00320633(00)00154-9. [CrossRef]
  • Fairfield, D.H. Average and unusual locations of the Earth’s magnetopause and bow shock. J. Geophys. Res., 76 (28), 6700, 1971. [CrossRef]
  • Famà, M., J. Shi, and R.A. Baragiola. Sputtering of ice by low-energy ions. Surf. Sci., 602, 156–161, 2008. [NASA ADS] [CrossRef]
  • Fasel, G.J., L.C. Lee, and R.W. Smith. A mechanism for the multiple brightenings of dayside poleward-moving auroral forms. Geophys. Res. Lett., 20, 2247–2250, 1993, DOI: 10.1029/93GL02487. [CrossRef]
  • Fedorova, A., O. Korablev, A.-C. Vandaele, J.-L. Bertaux, D. Belyaev, et al. HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by solar occultation at infrared spectrometer on board Venus Express. J. Geophys. Res., 113, E00B22, 2008, DOI: 10.1029/2008JE003146. [CrossRef]
  • Feuchtgruber, H., E. Lellouch, T. de Graauw, B. Bézard, T. Encrenaz, and M. Griffin. External supply of oxygen to the atmospheres of the giant planets. Nature, 389 (6647), 159–162, 1997. [NASA ADS] [CrossRef] [PubMed]
  • Fichtner, H., B. Heber, and M. Leipold. The science with the interstellar heliopause probe. Astrophys. Space Sci. Trans., 2, 33–43, 2006. [CrossRef]
  • Fleshman, B.L., P.A. Delamere, and F. Bagenal. Modeling the Enceladus plume–plasma interaction. Geophys. Res. Lett., 37, L03202, 2010, DOI: 10.1029/2009GL041613. [CrossRef]
  • Forbes, J.M., S. Bruinsma, and F.G. Lemoine. Solar rotation effects on the thermospheres of Mars and Earth. Science, 312, 1366–1368, 2006, DOI: 10.1126/science.1126389. [CrossRef]
  • Forget, F., F. Montmessin, J.-L. Bertaux, F. Gonzalez-Galindo, S. Lebonnois, E. Quemerais, A. Reberac, E. Dimarellis, and M.A. Lopez-Valverde. Density and temperatures of the upper Mar atmosphere measured by stellar occultations with Mars Express SPICAM. J. Geophys. Res. [Planets], 114, 1004, 2009. [CrossRef]
  • Fox, J.L. Near-terminator Venus ionosphere: how Chapman-esque? J. Geophys. Res., 112, E04S02, 2007, DOI: 10.1029/2006JE002736. [CrossRef]
  • Fox, J.L. The chemistry of protonated species in the martian ionosphere. Icarus, 252, 366–392, 2015, DOI: 10.1016/j.icarus.2015.01.010. [CrossRef]
  • Fox, J.L., and S.W. Bougher. Structure, luminosity, and dynamics of the Venus thermosphere. In: Venus Aeronomy, Springer, Netherlands, 357–489, 1991. [CrossRef]
  • Fox, J.L., P. Zhou, and S.W. Bougher. The Martian thermosphere/ionosphere at high and low solar activities. Adv. Space Res., 17 (11), 203–218, 1996, DOI: 10.1016/0273-1177(95)00751-Y. [CrossRef]
  • Frank, L.A., J.D. Craven, J.L. Burch, and J.D. Winningham. Polar views of the earth’s aurora with Dynamics Explorer. Geophys. Res. Lett., 9, 1001–1004, 1982, DOI: 10.1029/GL009i009p01001. [CrossRef]
  • Frank, L.A., W.R. Paterson, K.L. Ackerson, and S.J. Bolton. Outflow of hydrogen ions from Ganymede. Geophys. Res. Lett., 24 (17), 2151–2154, 1997. [CrossRef]
  • Fulchignoni, M., F. Ferri, F. Angrilli, A.J. Ball, A. Bar-Nun, et al. In situ measurements of the physical characteristics of Titan’s environment. Nature, 438, 785–791, 2005, DOI: 10.1038/nature04314. [NASA ADS] [CrossRef]
  • Funsten, H.O., F. Allegrini, G.B. Crew, R. DeMajistre, P.C. Frisch, et al. Structures and spectral variations of the outer heliosphere in IBEX energetic neutral atom maps. Science, 326, 5955–5964, 2009. [NASA ADS] [CrossRef]
  • Fuselier, S.A., H.L. Collin, A.G. Ghielmetti, E.S. Claflin, T.E. Moore, et al. Localized ion outflow in response to a solar wind pressure pulse. J. Geophys. Res. [Space Phys.], 107, 1203, 2002, DOI: 10.1029/2001JA000297.
  • Futaana, Y., S. Barabash, M. Yamauchi, S. McKenna-Lawlor, R. Lundin, et al. Mars Express and Venus Express multi-point observations of geoeffective solar flare events in December 2006. Planet. Space Sci., 6, 873–880, 2008. [CrossRef]
  • Futaana, Y., S. Barabash, X.-D. Wang, M. Wieser, G.S. Wieser, P. Wurz, N. Krupp, and P.C. Brandt. Low-energy energetic neutral atom imaging of Io plasma and neutral tori. Planet. Space Sci., 108, 41–53, 2015. [CrossRef]
  • Gagné, M.-È., J.-L. Bertaux, F. González-Galindo, S.M.L. Melo, F. Montmessin, and K. Strong. New nitric oxide (NO) nightglow measurements with SPICAM/MEx as a tracer of Mars upper atmosphere circulation and comparison with LMD-MGCM model prediction: evidence for asymmetric hemispheres. J. Geophys. Res. [Planets], 118, 2172–2179, 2013, DOI: 10.1002/jgre.20165. [CrossRef]
  • Galand, M., J. Lilensten, D. Toublanc, and S. Maurice. The ionosphere of Titan: ideal diurnal and nocturnal cases. Icarus, 140, 92–105, 1999, DOI: 10.1006/icar.1999.6113. [NASA ADS] [CrossRef]
  • Galand, M., L. Moore, B. Charnay, I. Mueller-Wodarg, and M. Mendillo. Solar primary and secondary ionization at Saturn. J. Geophys. Res., 114 (A6), A06313, 2009. [NASA ADS] [CrossRef]
  • Gannon, J.L., X. Li, and M. Temerin. Parametric study of shock-induced transport and energization of relativistic electrons in the magnetosphere. J. Geophys. Res., 110, A12206, 2005, DOI: 10.1029/2004JA010679. [CrossRef]
  • Garnier, P., J.-E. Wahlund, L. Rosenqvist, R. Modolo, K. Agren, et al. Titan’s ionosphere in the magnetosheath: Cassini RPWS results during the T32 flyby. Ann. Geophys., 27, 4257–4272, 2009, DOI: 10.5194/angeo-27-4257-2009. [CrossRef]
  • Garnier, P., I. Dandouras, D. Toublanc, E.C. Roelof, P.C. Brandt, et al. Statistical analysis of the energetic ion and ENA data for the Titan environment. Planet. Space Sci., 58, 1811–1822, 2010, DOI: 10.1016/j.pss.2010.08.009. [CrossRef]
  • Gérard, J.-C., D. Grodent, J. Gustin, A. Saglam, J.T. Clarke, and J.T. Trauger. Characteristics of Saturn’s FUV aurora observed with the Space Telescope Imaging Spectrograph. J. Geophys. Res. [Space Phys.], 109, A09207, 2004, DOI: 10.1029/2004JA010513.
  • Gérard, J.-C., E.J. Bunce, D. Grodent, S.W.H. Cowley, J.T. Clarke, and S.V. Badman. Signature of Saturn’s auroral cusp: simultaneous Hubble Space Telescope FUV observations and upstream solar wind monitoring. J. Geophys. Res. [Space Phys.], 110, A11201, 2005, DOI: 10.1029/2005JA011094. [NASA ADS] [CrossRef]
  • Gérard, J.C., L. Soret, L. Libert, R. Lundin, A. Stiepen, A. Radioti, and J.L. Bertaux. Concurrent observations of ultraviolet aurora and energetic electron precipitation with Mars Express. J. Geophys. Res. [Space Phys.], 120 (8), 6749–6765, 2015. [CrossRef]
  • Gershman, D.J., J.A. Slavin, J.M. Raines, T. Zurbuchen, B. Anderson, H. Korth, D. Baker, and S. Solomon. Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. J. Geophys. Res., 118, 7181, 2013. [CrossRef]
  • Gillmann, C., P. Lognonné, E. Chassefiere, and M. Moreira. The present-day atmosphere of Mars: where does it come from? Earth Planet. Sci. Lett., 277, 384–393, 2009. [CrossRef]
  • Gladstone, G.R., J.H. Waite, D. Grodent, W.S. Lewis, F.J. Crary, et al. A pulsating auroral X-ray hot spot on Jupiter. Nature, 415, 1000–1003, 2002. [NASA ADS] [CrossRef] [PubMed]
  • Glassmeier, K.-H., J. Grosser, U. Auster, D. Constantinescu, Y. Narita, and S. Stellmach. Electromagnetic induction effects and dynamo action in the Hermean system. Space Sci. Rev., 132, 511–527, 2007, DOI: 10. 1007/s11214-007-9244-9. [CrossRef]
  • Gombosi, T.I., T.P. Armstrong, C.S. Arridge, K.K. Khurana, S.M. Krimigis, N. Krupp, A.M. Persoon, and M.F. Thomsen. Saturn’s Magnetospheric Configuration. In: M.K. Dougherty, L.W. Esposito, and S.M. Krimigis, Editors. Saturn from Cassini-Huygens, Springer Science+Business Media B.V, Heidelberg, 203, 2009. [CrossRef]
  • Gopalswamy, N., H. Xie, S. Yashiro, S. Akiyama, P. Mäkelä, and I.G. Usoskin. Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci. Rev., 171, 23–60, 2012, DOI: 10.1007/s11214-012-9890-4. [NASA ADS] [CrossRef]
  • Gray, C.L., N.J. Chanover, T.G. Slanger, and K. Molaverdikhani. The effect of solar flares, coronal mass ejections, and solar wind streams on Venus’ 5577Å oxygen green line. Icarus, 233, 342–347, 2014. [CrossRef]
  • Grasset, O., M.K. Dougherty, A. Coustenis, E.J. Bunce, C. Erd, et al. JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci., 78, 1–21, 2013, DOI: 10.1016/j.pss.2012.12.002 [NASA ADS] [CrossRef]
  • Grodent, D., J.H. Waite, and J.C. Gérard. A self‐consistent model of the Jovian auroral thermal structure. J. Geophys. Res. [Space Phys.], 106 (A7), 12933–12952, 2001. [NASA ADS] [CrossRef]
  • Grodent, D., J.T. Clarke, J. Kim, J.H. Waite, and S.W.H. Cowley. Jupiter’s main auroral oval observed with HST-STIS. J. Geophys. Res. [Space Phys.], 108, 1389, 2003a, DOI: 10.1029/2003JA009921. [CrossRef]
  • Grodent, D., J.T. Clarke, J.H. Waite, S.W.H. Cowley, J.-C. Gérard, and J. Kim. Jupiter’s polar auroral emissions. J. Geophys. Res. [Space Phys.], 108, 1366, 2003b, DOI: 10.1029/2003JA010017. [CrossRef]
  • Grodent, D., J.-C. Gérard, J.T. Clarke, G.R. Gladstone, and J.H. Waite. A possible auroral signature of a magnetotail reconnection process on Jupiter. J. Geophys. Res. [Space Phys.], 109, A05201, 2004, DOI: 10.1029/2003JA010341. [CrossRef]
  • Grodent, D., J.-C. Gérard, S.W.H. Cowley, E.J. Bunce, and J.T. Clarke. Variable morphology of Saturn’s southern ultraviolet aurora. J. Geophys. Res. [Space Phys.], 110, A07215, 2005, DOI: 10.1029/2004JA010983. [CrossRef]
  • Grodent, D., B. Bonfond, A. Radioti, J.-C. Gerard, X. Jia, J.D. Nichols, and J.T. Clarke. Auroral footprint of Ganymede. J. Geophys. Res. [Space Phys.], 114, A07212, 2009, DOI: 10.1029/2009JA014289. [CrossRef]
  • Grodent, D., J. Gustin, J.-C. Gerard, A. Radioti, B. Bonfond, and W.R. Pryor. Small-scale structures in Saturn’s ultraviolet aurora. J. Geophys. Res. [Space Phys.], 116, A09225, 2011, DOI: 10.1029/2011JA016818. [CrossRef]
  • Grodent, D.A. Brief review of ultraviolet auroral emissions on giant planets. Space Sci. Rev., 187, 23–50, 2015, DOI: 10.1007/s11214-014-0052-8. [CrossRef]
  • Gronoff, G., J. Lilensten, C. Simon, M. Barthélemy, and F. Leblanc. Modelling the Venusian airglow. A&A, 482, 1015–1029, 2008, DOI: 10.1051/0004-6361:20077503. [NASA ADS] [CrossRef] [EDP Sciences]
  • Gronoff, G., J. Lilensten, L. Desorgher, and E. Flückiger. Ionization processes in the atmosphere of Titan. I. Ionization in the whole atmosphere. A&A, 506, 955–964, 2009a, DOI: 10.1051/0004-6361/200912371. [NASA ADS] [CrossRef] [EDP Sciences]
  • Gronoff, G., J. Lilensten, and R. Modolo. Ionization processes in the atmosphere of Titan. II. Electron precipitation along magnetic field lines. A&A, 506, 965–970, 2009b, DOI: 10.1051/0004-6361/200912125. [NASA ADS] [CrossRef] [EDP Sciences]
  • Gronoff, G., C. Mertens, J. Lilensten, L. Desorgher, E. Flückiger, and P. Velinov. Ionization processes in the atmosphere of Titan. III. Ionization by high-Z nuclei cosmic rays. A&A, 529, A143, 2011, DOI: 10.1051/0004-6361/201015675. [CrossRef] [EDP Sciences]
  • Gronoff, G., R.B. Norman, and C.J. Mertens. Computation of cosmic ray ionization and dose at Mars. I: A comparison of HZETRN and Planetocosmics for proton and alpha particles. Adv. Space Res., 55, 1799–1805, 2015, DOI: 10.1016/j.asr.2015.01.028. [CrossRef]
  • Grott, M., A. Morschhauser, D. Breuer, and E. Hauber. Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett., 308, 391–400, 2011. [NASA ADS] [CrossRef]
  • Guervilly, C., P. Cardin, and N. Schaeffer. A dynamo driven by zonal jets at the upper surface: applications to giant planets. Icarus, 218, 100–114, 2012, DOI: 10.1016/j.icarus.2011.11.014. [CrossRef]
  • Guinan, E.F., and I. Ribas. Our changing Sun: the role of solar nuclear evolution and magnetic activity on Easrth’s atmosphere and climate. ASP Conference Series, 269, 86–106, 2002.
  • Gurnett, D.A., W.S. Kurth, A. Roux, S.J. Bolton, and C.F. Kennel. Evidence for a magnetosphere at Ganymede from plasma-wave observations by the Galileo spacecraft. Nature, 384, 535–537, 1996, DOI: 10.1038/384535a0. [CrossRef]
  • Gurnett, D.A., P. Zarka, R. Manning, W.S. Kurth, G.B. Hospodarsky, T.F. Averkamp, M.L. Kaiser, and W.M. Farrell. Non-detection at Venus of high-frequency radio signals characteristic of terrestrial lightning. Nature, 409, 313–315, 2001, DOI: 10.1038/35053009. [CrossRef]
  • Gurnett, D.A., W.S. Kurth, G.B. Hospodarsky, A.M. Persoon, P. Zarka, et al. Control of Jupiter’s radio emission and aurorae by the solar wind. Nature, 415 (6875), 985–987, 2002. [NASA ADS] [CrossRef] [PubMed]
  • Gurtner, M., L. Desorgher, E.O. Flückiger, and M.R. Moser. A Geant4 application to simulate the interaction of space radiation with the Mercurian environment. Adv. Space Res., 37, 1759–1763, 2006, DOI: 10.1016/j.asr.2004.12.015. [CrossRef]
  • Hall, D.T., D.F. Strobel, P.D. Feldman, M.A. McGrath, and H.A. Weaver. Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature, 373 (6516), 677–681, 1995. [NASA ADS] [CrossRef] [PubMed]
  • Hall, D.T., P.D. Feldman, M.A. McGrath, and D.F. Strobel. The far ultraviolet oxygen airglow of Europa and Ganymede. Astrophys. J., 499, 475–481, 1998. [CrossRef]
  • Hallinan, G., S.P. Littlefair, G. Cotter, S. Bourke, L.K. Harding, et al. Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence. Nature, 523 (7562), 568–571, 2015. [NASA ADS] [CrossRef]
  • Hamelin, M., C. Béghin, R. Grard, J.J. López-Moreno, K. Schwingenschuh, et al. Electron conductivity and density profiles derived from the mutual impedance probe measurements performed during the descent of Huygens through the atmosphere of Titan. Planet. Space Sci., 55, 1964–1977, 2007, DOI: 10.1016/j.pss.2007.04.008. [NASA ADS] [CrossRef]
  • Hanel, R., B. Conrath, F.M. Flasar, V. Kunde, W. Maguire, et al. Infrared observations of the Uranian system. Science, 233 (4759), 70–74, 1986. [CrossRef]
  • Hanlon, P.G., M.K. Dougherty, R.J. Forsyth, M.J. Owens, K.C. Hansen, G. Tóth, F.J. Crary, and D.T. Young. On the evolution of the solar wind between 1 and 5 AU at the time of the Cassini Jupiter flyby: multispacecraft observations of interplanetary coronal mass ejections including the formation of a merged interaction region. J. Geophys. Res. [Space Phys.], 109 (A9), A09S03, 2004.
  • Hansen, C.J., D.E. Shemansky, and A.R. Hendrix. Cassini UVIS observations of Europa’s oxygen atmosphere and torus. Icarus, 176, 305–315, 2005. [CrossRef]
  • Hartogh, P., E. Lellouch, J. Crovisier, M. Banaszkiewicz, F. Bensch, et al. Water and related chemistry in the Solar System. A guaranteed time key programme for Herschel. Planet. Space Sci., 57 (13), 1596–1606, 2009. [NASA ADS] [CrossRef]
  • Hartogh, P., D.C. Lis, D. Bockelée-Morvan, M. de Val-Borro, and N. Biver. Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature, 478 (7368), 218–220, 2011. [NASA ADS] [CrossRef] [PubMed]
  • Hasegawa, H., M. Fujimoto, Y. Saito, and T. Mukai. Dense and stagnant ions in the low-latitude boundary region under northward interplanetary magnetic field. Geophys. Res. Lett., 31, L06802, 2004a, DOI: 10.1029/2003GL019120.
  • Hasegawa, H., M. Fujimoto, T.-D. Phan, H. Reme, A. Balogh, M.W. Dunlop, C. Hashimoto, and R. TanDokoro. Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature, 430, 755–758, 2004b. [NASA ADS] [CrossRef]
  • Hassler, D.M., C. Zeitlin, R.F. Wimmer-Schweingruber, S. Böttcher, C. Martin, et al. The Radiation Assessment Detector (RAD) investigation. Space Sci. Rev., 170, 503–558, 2012, DOI: 10.1007/s11214-012-9913-1. [NASA ADS] [CrossRef]
  • Hassler, D.M., C. Zeitlin, R.F. Wimmer-Schweingruber, B. Ehresmann, S. Rafkin, et al. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover. Science, 343, 1244797, 2014, DOI: 10.1126/science.1244797. [CrossRef]
  • Herbert, F. Aurora and magnetic field of Uranus. J. Geophys. Res. [Space Phys], 114, A11, 2009, DOI: 10.1029/2009JA014394.
  • Herbert, F., B.R. Sandel, R.V. Yelle, J.B. Holberg, A.L. Broadfoot, D.E. Shemansky, S.K. Atreya, and P.N. Romani. The upper atmosphere of Uranus - EUV occultations observed by Voyager 2. J. Geophys. Res., 92, 15093–15109, 1987. [CrossRef]
  • Hill, T.W. The Jovian auroral oval. J. Geophys. Res. [Space Phys.], 106, 8101–8108, 2001, DOI: 10.1029/2000JA000302. [NASA ADS] [CrossRef]
  • Ho, G.C., S.M. Krimigis, R.E. Gold, D.N. Baker, B.J. Anderson, et al. Spatial distribution and spectral characteristics of energetic electrons in Mercury’s magnetosphere. J. Geophys. Res., 117, A00M04, 2012.
  • Hood, L.L. Radial diffusion in Saturn’s radiation belts – a modeling analysis assuming satellite and ring E absorption. J. Geophys. Res. [Space Phys.], 88, 808–818, 1983, DOI: 10.1029/JA088iA02p00808. [CrossRef]
  • Hood, L.L., and G. Schubert. Inhibition of solar wind impingement on Mercury by planetary induction currents. J. Geophys. Res., 84, 2641–2647, 1979. [CrossRef]
  • Huddleston, D.E., C.T. Russell, G. Le, and A. Szabo. Magnetopause structure and the role of reconnection at the outer planets. J. Geophys. Res. [Space Phys.], 102, 24289–24302, 1997, DOI: 10.1029/97JA02416. [CrossRef]
  • Hunt, G.J., S.W.H. Cowley, G. Provan, E.J. Bunce, I.I. Alexeev, E.S. Belenkaya, V.V. Kalegaev, M.K. Dougherty, and A.J. Coates. Field-aligned currents in Saturn’s southern nightside magnetosphere: subcorotation and planetary period oscillation components. J. Geophys. Res. [Space Phys.], 119, 9847–9899, 2014, DOI: 10.1002/2014JA020506. [CrossRef]
  • Ip, W.-H. Europa’s oxygen exosphere and its magnetospheric interaction. Icarus, 120, 317–325, 1996, DOI: 10.1006/icar.1996.0052. [CrossRef]
  • Jackman, C.M., N. Achilleos, E.J. Bunce, S.W.H. Cowley, M.K. Dougherty, G.H. Jones, S.E. Milan, and E.J. Smith. Interplanetary magnetic field at ~9 AU during the declining phase of the solar cycle and its implications for Saturn’s magnetospheric dynamics. J. Geophys. Res., 109, A11203, 2004, DOI: 10.1029/2004JA010614. [CrossRef]
  • Jackman, C.M., R.J. Forsyth, and M.K. Dougherty. The overall configuration of the interplanetary magnetic field upstream of Saturn as revealed by Cassini observations. J. Geophys. Res., 113, A08114, 2008, DOI: 10.1029/2008JA013083.
  • Jackman, C.M., L. Lamy, M.P. Freeman, M.P. Freeman, P. Zarka, B. Cecconi, W.S. Kurth, S.W.H. Cowley, and M.K. Dougherty. On the character and distribution of lower-frequency radio emissions at Saturn and their relationship to substorm-like events. J. Geophys. Res., 114, A08211, 2009, DOI: 10.1029/2008JA013997.
  • Jackman, C.M., N. Achilleos, S.W.H. Cowley, E.J. Bunce, A. Radioti, D. Grodent, S.V. Badman, M.K. Dougherty, and W. Pryor. Auroral counterpart of magnetic field dipolarizations in Saturn’s tail. Planet. Space Sci., 82, 34–42, 2013, DOI: 10.1016/j.pss.2013.03.010. [CrossRef]
  • Jakosky, B.M., J.M. Grebowsky, J.G. Luhmann, J. Connerney, F. Eparvier, et al. MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 350 (6261), 1–7, 2015. [CrossRef]
  • Jasinski, J.M., C.S. Arridge, L. Lamy, J.S. Leisner, M.F. Thomsen, et al. Cusp observation at Saturn’s high-latitude magnetosphere by the Cassini spacecraft. Geophys. Res. Lett., 41, 1382–1388, 2014, DOI: 10.1002/2014GL059319. [CrossRef]
  • Jaumann, R., R.H. Brown, K. Stephan, J.W. Barnes, and L.A. Soderblom. Fluvial erosion and post-erosional processes on Titan. Icarus, 197, 526–538, 2008, DOI: 10.1016/j.icarus.2008.06.002. [CrossRef]
  • Jia, X., R.J. Walker, M.G. Kivelson, K.K. Khurana, and J.A. Linker. Properties of Ganymede’s magnetosphere inferred from improved three-dimensional MHD simulations. J. Geophys. Res. [Space Phys.], 114, A09209, 2009, DOI: 10.1029/2009JA014375. [CrossRef]
  • Jia, X., R.J. Walker, M.G. Kivelson, K.K. Khurana, and J.A. Linker. Dynamics of Ganymede’s magnetopause: intermittent reconnection under steady external conditions. J. Geophys. Res., 115, A12202, 2010, DOI: 10.1029/ 2010JA015771.
  • Jia, X., K.C. Hansen, T.I. Gombosi, M.G. Kivelson, G. Tóth, D.L. DeZeeuw, and A.J. Ridley. Magnetospheric configuration and dynamics of Saturn’s magnetosphere: a global MHD simulation. J. Geophys. Res. [Space Phys.], 117, A05225, 2012, DOI: 10.1029/2012JA017575.
  • Jia, X., J.A. Slavin, T.I. Gombosi, L.K.S. Daldorff, G. Toth, and B. van der Holst. Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: induction effect of the planetary conducting core on the global interaction. J. Geophys. Res. [Space Phys.], 120, 4763–4775, 2015, DOI: 10.1002/2015JA021143. [CrossRef]
  • Johnson, R.E. Plasma-induced sputtering of an atmosphere. Space Sci. Rev., 69, 215–253, 1994. [CrossRef]
  • Johnson, R.E. Polar caps on Ganymede and Io revisited. Icarus, 128, 469–471, 1997, DOI: 10.1006/icar.1997.5746. [CrossRef]
  • Johnson, R.E. Surface chemistry in the Jovian magnetosphere radiation environment. In: R. Dessler, Editor. Chemical Dynamics in Extreme Environments, Adv. Ser. Phys. Chem. World Scientific, Singapore 11, 390–419 (Chapter 8), 2001. [CrossRef]
  • Johnson, R.E., R.W. Carlson, J.F. Cooper, C. Paranicas, M.H. Moore, and M.C. Wong. Radiation effects on the surface of the Galilean satellites. In: F. Bagenal, T. Dowling, and W. McKinnon, Editors. Jupiter: The Planet, Satellites and Magnetosphere, Cambridge Univ. Press, 485–512, (Chapter 20), 2004.
  • Johnson, R.E., J.G. Luhmann, R.L. Tokar, M. Bouhram, J.J. Berthelier, et al. Production ionization and redistribution of O2 in Saturn’s ring atmosphere. Icarus, 180, 393–402, 2006, DOI: 10.1016/j.icarus.2005.08.021. [NASA ADS] [CrossRef]
  • Johnson, R.E., M.H. Burger, T.A. Cassidy, F. Leblanc, M. Marconi, and W.H. Smyth. Composition and Detection of Europa’s Sputter-Induced Atmosphere. In: R.T. Pappalardo, W.B. McKinnon, K. Khurana, and K. Khurana, Editors. Europa, University of Arizona Press, Tucson, 507–527, 2009.
  • Kabin, K., T.I. Gombosi, D.L. Dezeeuw, and K.G. Powell. Interaction of Mercury with the solar wind. Icarus, 143 (2), 397, 2000. [NASA ADS] [CrossRef]
  • Kahler, S.W., N.R. Sheeley Jr., R.A. Howard, D.J. Michels, M.J. Koomen, R.E. McGuire, T.T. von Rosenvinge, and D.V. Reames. Associations between coronal mass ejections and solar energetic proton events. J. Geophys. Res., 89, 9683–9693, 1984, DOI: 10.1029/JA089iA11p09683. [NASA ADS] [CrossRef]
  • Kallio, E., and P. Janhunen. Solar wind and magnetospheric ion impact on Mercury’s surface. Geophys. Res. Lett., 30 (17), 1877, 2003, DOI: 10.1029/2003GL017842. [CrossRef]
  • Kallio, E., and P. Janhunen. The response of the Hermean magnetosphere to the interplanetary magnetic field. Adv. Space Res., 33 (12), 2176–2181, 2004. [CrossRef]
  • Kameda, S., I. Yoshikawa, M. Kagitani, and S. Okano. Interplanetary dust distribution and temporal variability of Mercury’s atmospheric Na. Geophys. Res. Lett., 36, L15201, 2009, DOI: 10.1029/2009GL039036. [CrossRef]
  • Keating, G.M., J.L. Bertaux, S.W. Bougher, R.E. Dickinson, T.E. Cravens, et al. Models of Venus neutral upper atmosphere: Structure and composition. Adv. Space Res., 5 (11), 117–171, 1985, DOI: 10.1016/0273-1177(85)90200-5. [NASA ADS] [CrossRef]
  • Khurana, K.K., M.G. Kivelson, D.J. Stevenson, G. Schubert, C.T. Russell, R.J. Walker, and C. Polanskey. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395, 777–780, 1998, DOI: 10.1038/27394. [NASA ADS] [CrossRef] [PubMed]
  • Khurana, K.K., M.G. Kivelson, V.M. Vasyliunas, N. Krupp, J. Woch, A. Lagg, B.H. Mauk, and W.S. Kurth. The configuration of Jupiter’s magnetosphere. In: F. Bagenal, T. Dowlingand, and W. McKinnon, Editors. Jupiter: The Planet, Satellites, Magnetosphere, Cambridge University Press, UK, 593–616, 2004.
  • Khurana, K.K., R.T. Pappalardo, N. Murphy, and T. Denk. The origin of Ganymede’s polar caps. Icarus, 191, 193–202, 2007. [CrossRef]
  • Khurana, K.K., C.T. Russell, and M.K. Dougherty. Magnetic portraits of Tethys and Rhea. Icarus, 193, 465–474, 2008, DOI: 10.1016/j.icarus.2007.08.005. [CrossRef]
  • Khurana, K.K., M.G. Kivelson, K.P. Hand, and C.T. Russel. Electromagnetic induction from Europa’s ocean and the deep interior. In: Robert.T. Pappalardo, William.B. McKinnon, and K. Khurana, Editors. Europa, University of Arizona Press, Tucson, 572–586, 2009.
  • Killen, R., G. Cremonese, H. Lammer, S. Orsini, A.E. Potter, et al. Processes that Promote and Deplete the Exosphere of Mercury. Space Sci. Rev., 132 (2–4), 433–509, 2007, DOI: 10.1007/s11214-007-9232-0. [NASA ADS] [CrossRef]
  • Killen, R.M., and W.-H. Ip. The surface-bounded atmospheres of Mercury and the Moon. Rev. Geophys., 37 (i.3), 361–406, 1999. [NASA ADS] [CrossRef]
  • Killen, R.M., A.E. Potter, P. Reiff, M. Sarantos, B.V. Jackson, P. Hick, and B. Giles. Evidence of space weather at Mercury. J. Geophys. Res., 106 (E9), 20509–20525, 2001. [NASA ADS] [CrossRef]
  • Killen, R.M., T.A. Bida, and T.H. Morgan. The calcium exosphere of Mercury. Icarus, 173 (2), 300–311, 2005. [NASA ADS] [CrossRef]
  • Killen, R.M., and J.M. Hahn. Impact vaporization as a possible source of Mercury’s calcium exosphere. Icarus, 250, 230–237, 2015. [NASA ADS] [CrossRef]
  • Kim, M.-H.Y., F.A. Cucinotta, H.N. Nounu, C. Zeitlin, D.M. Hassler, et al. Comparison of Martian surface ionizing radiation measurements from MSL-RAD with Badhwar-O’Neill 2011/HZETRN model calculations. J. Geophys. Res. [Planets], 119, 1311–1321, 2014, DOI: 10.1002/2013JE004549. [CrossRef]
  • Kivelson, M.G., and C.T. Russell. Introduction to space physics, Cambridge University Press, Cambridge, ISBN: 0-521-45104-3, 1995.
  • Kivelson, M.G., K.K. Khurana, C.T. Russell, R.J. Walker, J. Warnecke, F.V. Coroniti, C. Polanskey, D.J. Southwood, and G. Schubert. Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature, 384, 537–541, 1996. [NASA ADS] [CrossRef]
  • Kivelson, M.G., K.K. Khurana, F.V. Coroniti, S. Joy, C.T. Russell, R.J. Walker, J. Warnecke, L. Bennett, and C. Polanskey. Magnetic field and magnetosphere of Ganymede. Geophys. Res. Lett., 24, 2155, 1997, DOI: 10.1029/97GL02201. [CrossRef]
  • Kivelson, M.G., F. Bagenal, W.S. Kurth, F.M. Neubauer, C. Paranicas, and J. Saur. Magnetospheric interactions with satellites. In: F. Bagenal, T. Dowling, and W. McKinnon, Editors. Jupiter: The Planet, Satellites and Magnetosphere, Cambridge University Press, UK, 513–536, 2004.
  • Kivelson, M.G., and F. Bagenal. Planetary Magnetospheres. In: Encyclopedia of the Solar System, Academic Press-Elsevier, ISBN-13: 978-0-12-088589-3/ISBN-10: 0-12-088589-1, (Chapter 28), 2007.
  • Kminek, G., and J.L. Bada. The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet. Sci. Lett., 245, 1–5, 2006, DOI: 10.1016/j.epsl.2006.03.008. [CrossRef]
  • Kollmann, P., E. Roussos, C. Paranicas, N. Krupp, and D.K. Haggerty. Processes forming and sustaining Saturn’s proton radiation belts. Icarus, 222, 323–341, 2013, DOI: 10.1016/j.icarus.2012.10.033. [CrossRef]
  • Kotova, A., E. Roussos, N. Krupp, and I. Dandouras. Simulation of the galactic cosmic rays interaction with Saturn’s atmosphere and rings, in: COSPAR communication, Moscow, 2014.
  • Kotova, A., E. Roussos, N. Krupp, and I. Dandouras. Modeling of the energetic ion observations in the vicinity of Rhea and Dione. Icarus, 258, 402–417, 2015, DOI: 10.1016/j.icarus.2015.06.031. [CrossRef]
  • Kriegel, H., S. Simon, J. Müller, U. Motschmann, J. Saur, K.-H. Glassmeier, and M.K. Dougherty. The plasma interaction of Enceladus: 3D hybrid simulations and comparison with Cassini MAG data. Planet. Space Sci., 57, 2113–2122, 2009, DOI: 10.1016/j.pss.2009.09.025. [NASA ADS] [CrossRef]
  • Krimigis, S.M., C.O. Bostrom, A.F. Cheng, T.P. Armstrong, and W.I. Axford. Hot plasma and energetic particles in Neptune’s magnetosphere. Science, 246, 1483–1489, 1989, DOI: 10.1126/science.246.4936.1483. [CrossRef]
  • Krimigis, S.M., D.G. Mitchell, D.C. Hamilton, N. Krupp, S. Livi, et al. Dynamics of Saturn’s magnetosphere from MIMI during Cassini’s orbital insertion. Science, 307, 1270–1273, 2005, DOI: 10.1126/science.1105978. [CrossRef]
  • Krimigis, S.M., N. Sergis, D.G. Mitchell, D.C. Hamilton, and N. Krupp. A dynamic, rotating ring current around Saturn. Nature, 450, 1050–1053, 2007, DOI: 10.1038/nature06425. [CrossRef]
  • Krimigis, S.M., D.G. Mitchell, E.C. Roelof, K.C. Hsieh, and D.J. McComas. Imaging the interaction of the heliosphere with the interstellar medium from Saturn with Cassini. Science, 326 (5955), 971, 2009. [NASA ADS] [CrossRef]
  • Kronberg, E.A., J. Woch, N. Krupp, A. Lagg, K.K. Khurana, and K.-H. Glassmeier. Mass release at Jupiter: substorm-like processes in the Jovian magnetotail. J. Geophys. Res., 110, A03211, 2005, DOI: 10.1029/2004JA010777. [CrossRef]
  • Krupp, N. Comparison of plasma sources in Solar System magnetospheres. Space Sci. Rev., 192, 285–295, 2015, DOI: 10.1007/s11214-015-0176-5. [CrossRef]
  • Ksanfomaliti, L.V., N.M. Vasilchikov, O.F. Ganpantserova, E.V. Petrova, A.P. Suvorov, G.F. Filippov, O.V. Iablonskaia, and L.V. Iabrova. Electrical discharges in the atmosphere of Venus. Sov. Astron. Lett., 5, 122–126, 1979.
  • Laakso, H., D.H. Fairfield, M.R. Collier, H. Opgenoorth, T.-D. Phan, et al. Oscillations of magnetospheric boundaries driven by IMF rotations. Geophys. Res. Lett., 25 (15), 3007–3010, 1998. [CrossRef]
  • Lai, H.R., H.Y. Wei, C.T. Russell, C.S. Arridge, and M.K. Dougherty. Reconnection at the magnetopause of Saturn: perspective from FTE occurrence and magnetosphere size. J. Geophys. Res. [Space Phys.], 117, A05222, 2012, DOI: 10.1029/2011JA017263. [CrossRef]
  • Lamy, L., P. Schippers, P. Zarka, B. Cecconi, C.S. Arridge, et al. Properties of Saturn kilometric radiation measured within its source region. Geophys. Res. Lett., 37, L12104, 2010, DOI: 10.1029/2010GL043415. [NASA ADS] [CrossRef]
  • Lamy, L., B. Cecconi, P. Zarka, P. Canu, P. Schippers, et al. Emission and propagation of Saturn kilometric radiation: magnetoionic modes, beaming pattern, and polarization state. J. Geophys. Res. [Space Phys.], 116, A04212, 2011, DOI: 10.1029/2010JA016195. [NASA ADS] [CrossRef]
  • Lamy, L., R. Prangé, K.C. Hansen, J.T. Clarke, P. Zarka, et al. Earth-based detection of Uranus’ aurorae. Geophys. Res. Lett., 39, L07105, 2012, DOI: 10.1029/2012GL051312. [CrossRef]
  • Landgraf, M., J.-C. Liou, H.A. Zook, and E. Grun. Origins of Solar System dust beyond Jupiter. Astroph. J., 123, 2857–2861, 2002.
  • Landis, G.A., S.G. Bailey, and R. Tischler. Causes of Power-Related Satellite Failures. In: IEEE 4th World conference on photovoltaic energy conversion, 2, 1943, 2006, DOI: 10.1109/WCPEC.2006.279878.
  • Larson, E.J.L., O.B. Toon, R.A. West, and A.J. Friedson. Microphysical modeling of Titan’s detached haze layer in a 3D GCM. Icarus, 254, 122–134, 2015, DOI: 10.1016/j.icarus.2015.03.010. [CrossRef]
  • Laurenza, M., E.W. Cliver, J. Hewitt, M. Storini, A.G. Ling, C.C. Balch, and M.L. Kaiser. A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather, 7, S04008, 2009, DOI: 10.1029/2007SW000379. [NASA ADS] [CrossRef]
  • Lavraud, B., E. Larroque, E. Budnik, V. Génot, J.E. Borovsky, et al. Asymmetry of magnetosheath flows and magnetopause shape during low Alfven Mach number solar wind. J. Geophys. Res., 118, 1089, 2013, DOI: 10.1002/jgra.50145. [CrossRef]
  • Lavvas, P., R.A. West, G. Gronoff, and P. Rannou. Titan’s emission processes during eclipse. Icarus, 241, 397–408, 2014. [CrossRef]
  • Leblanc, F., and R.E. Johnson. Mercury’s sodium exosphere. Icarus, 164, 261–281, 2003. [NASA ADS] [CrossRef]
  • Leblanc, F., A.E. Potter, R.M. Killen, and R.E. Johnson. Origins of Europa Na cloud and torus. Icarus, 178, 367–385, 2005, DOI: 10.1016/j.icarus.2005.03.027. [CrossRef]
  • Leblanc, F., J.G. Luhmann, R.E. Johnson, and M. Liu. Solar Energetic particle event at Mercury. Planet. Space Sci., 51, 339–352, 2003. [CrossRef]
  • Leblanc, F., J.Y. Chaufray, J. Lilensten, O. Witasse, and J.L. Bertaux. Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. J. Geophys. Res. [Planets], 111, E09S11, 2006a, DOI: 10.1029/2005JE002664. [CrossRef]
  • Leblanc, F., O. Witasse, J. Winningham, D. Brain, J. Lilensten, P.L. Blelly, R.A. Frahm, J.S. Halekas, and J.L. Bertaux. Origins of the Martian aurora observed by Spectroscopy for investigation of characteristics of the atmosphere of Mars (SPICAM) on board Mars Express. J. Geophys. Res. [Space Phys.], 111, A09313, 2006b, DOI: 10.1029/2006JA011763. [CrossRef]
  • Leblanc, F., A. Doressoundiram, N. Schneider, V. Mangano, A. López Ariste, C. Lemen, B. Gelly, C. Barbieri, and G. Cremonese. High latitude peaks in Mercury’s sodium exosphere: spectral signature using THEMIS solar telescope. Geophys. Res. Lett., 35, L18204, 2008, DOI: 10.1029/2008GL035322. [CrossRef]
  • Lilensten, J., and A. Belehaki. Developing the scientific basis for monitoring, modelling and predicting space weather. Acta. Geophys, 57, 1–14, 2009, DOI: 10.2478/s11600-008-0081-3. [CrossRef]
  • Lilensten, J., C. Simon, O. Witasse, O. Dutuit, R. Thissen, and C. Alcarez. A fast comparison of the diurnal secondary ion production in the ionosphere of Titan. Icarus, 174, 285, 2005a. [NASA ADS] [CrossRef]
  • Lilensten, J., O. Witasse, C. Simon, H. Soldi-Lose, O. Dutuit, R. Thissen, and C. Alcaraz. Prediction of a N2++ layer in the upper atmosphere of Titan. Geophys. Res. Lett., 32, L03203, 2005b, DOI: 10.1029/2004GL021432. [CrossRef]
  • Lilensten, J., C. Simon Wedlund, M. Barthélémy, R. Thissen, D. Ehrenreich, G. Gronoff, and O. Witasse. Dications and thermal ions in planetary atmospheric escape. Icarus, 222, 169–187, 2013, DOI: 10.1016/j.icarus.2012.09.034. [CrossRef]
  • Lilensten, J., A.J. Coates, V. Dehant, T. Dudok de Wit, R.B. Horne, F. Leblanc, J. Luhmann, E. Woodfield, and M. Barthélemy. What characterizes planetary space weather? Astron. Astrophys. Rev., 22–79, 2014, DOI: 10.1007/s00159-014-0079-6.
  • Lilensten, J., D. Bernard, M. Barthélémy, G. Gronoff, C. Simon Wedlund, and A. Opitz. The blue, red and green aurorae at the Red planet. Planet. Space Sci., 2015.
  • Lollo, A., P. Withers, K. Fallows, Z. Girazian, M. Matta, and P.C. Chamberlin. Numerical simulations of the ionosphere of Mars during a solar flare. J. Geophys. Res., 117 (A5), A05314, 2012. [CrossRef]
  • Lopes, R.M.C., and D.A. Williams. Io after Galileo. Rep. Prog. Phys., 68, 303–340, 2005, DOI: 10.1088/0034-4885/68/2/R02. [CrossRef]
  • López-Moreno, J.J., G.J. Molina-Cuberos, M. Hamelin, R. Grard, F. Simões, et al. Structure of Titan’s low altitude ionized layer from the Relaxation Probe onboard HUYGENS. Geophys. Res. Lett., 35, L22104, 2008, DOI: 10.1029/2008GL035338. [NASA ADS] [CrossRef]
  • Lorenzato, L., A. Sicard, and S. Bourdarie. A physical model for electron radiation belts of Saturn. J. Geophys. Res. [Space Phys.], 117, A08214, 2012, DOI: 10.1029/2012JA017560. [CrossRef]
  • Louarn, P., A. Roux, S. Perraut, W. Kurth, and D. Gurnett. A study of the large-scale dynamics of the Jovian magnetosphere using the Galileo plasma wave experiment. Geophys. Res. Lett., 25, 2905–2908, 1998. [CrossRef]
  • Lucchetti, A., C. Plainaki, G. Cremonese, A. Milillo, T. Cassidy, X. Jia, and V. Shematovich. Loss rates of Europa’s exosphere. Planet. Space Sci., 2016, in press, DOI: 10.1016/j.pss.2016.01.009.
  • Luhmann, J.G., R.J. Warniers, C.T. Russell, J.R. Spreiter, and S.S. Stahara. A gas dynamic magnetosheath field model for unsteady interplanetary fields - Application to the solar wind interaction with Venus. J. Geophys. Res., 91, 3001–3010, 1986, DOI: 10.1029/JA091iA03p03001. [CrossRef]
  • Luhmann, J.G., C.T. Russell, F.L. Scarf, L.H. Brace, and W.C. Knudsen. Characteristics of the marslike limit of the venus-solar wind interaction. J. Geophys. Res., 92, 8545–8557, 1987. [CrossRef]
  • Luhmann, J.G., W.T. Kasprzak, and C.T. Russell. Space weather at Venus and its potential consequences for atmosphere evolution. J. Geophys. Res. [Planets], 112, E04S10, 2007, DOI: 10.1029/2006JE002820. [CrossRef]
  • Luhmann, J.G., A. Fedorov, S. Barabash, E. Carlsson, Y. Futaana, et al. Venus Express observations of atmospheric oxygen escape during the passage of several coronal mass éjections. J. Geophys. Res., 113 (52), E00B04, 2008, DOI: 10.1029/2008JE003092. [CrossRef]
  • Lundin, R., A. Zakharov, R. Pellinen, S.W. Barabash, H. Borg, et al. ASPERA/Phobos measurements of the ion outflow from the Martian ionosphere. Geophys. Res. Lett., 17, 873–876, 1990. [CrossRef]
  • Lundin, R., H. Lammer, and I. Ribas. Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci. Rev., 129, 245–278, 2007. [NASA ADS] [CrossRef]
  • Lundin, R., S. Barabash, A. Fedorov, M. Holmstrom, H. Nilsson, J. Sauvaud, and M. Yamauchi. Solar forcing and planetary ion escape from Mars. Geophys. Res. Let., 35, 9203, 2008. [CrossRef]
  • Majeed, T., and J.C. McConnell. The upper ionospheres of Jupiter and Saturn. Planet. Space Sci., 39, 1715–1732, 1991. [CrossRef]
  • Mandt, K.E., D.A. Gell, M. Perry, J.H. Waite Jr., F.A. Crary, et al. Ion densities and composition of Titan’s upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer: analysis methods and comparison of measured ion densities to photochemical model simulations. J. Geophys. Res., 117, E10006, 2012, DOI: 10.1029/2012JE004139. [CrossRef]
  • Mangano, V., S. Massetti, A. Milillo, C. Plainaki, S. Orsini, and F. Leblanc. THEMIS Na exosphere observations of Mercury and their correlation with in-situ magnetic field measurements by MESSENGER. Planet. Space Sci., 115, 102–109, 2015. [CrossRef]
  • Marconi, M.L. A kinetic model of Ganymede’s atmosphere. Icarus, 190, 155–174, 2007. [CrossRef]
  • Massetti, S., S. Orsini, A. Milillo, A. Mura, E. de Angelis, H. Lammer, and P. Wurz. Mapping of the cusp plasma precipitation on the surface of Mercury. Icarus, 166 (i.2), 229–237, 2003. [CrossRef]
  • Masters, A. Magnetic reconnection at Uranus’ magnetopause. J. Geophys. Res. [Space Phys.], 119, 5520–5538, 2014, DOI: 10.1002/2014JA020077. [CrossRef]
  • Masters, A., S.J. Schwartz, E.M. Henley, M.F. Thomsen, B. Zieger, et al. Electron heating at Saturn’s bow shock. J. Geophys. Res. [Space Phys.], 116, A10107, 2011. [CrossRef]
  • Masters, A., N. Achilleos, J.C. Cutler, A.J. Coates, M.K. Dougherty, and G.H. Jones. Surface waves on Saturn’s magnetopause. Planet. Space Sci., 65, 109–121, 2012, DOI: 10.1016/j.pss.2012.02.007. [CrossRef]
  • Masunaga, K., Y. Futaana, G. Stenberg, S. Barabash, T.L. Zhang, A. Fedorov, S. Okano, and N. Terada. Dependence of O+ escape rate from the Venusian upper atmosphere on IMF directions. Geophys. Res. Lett., 40 (9), 1682–1685, 2014, DOI: 10.1002/grl.50392. [CrossRef]
  • Mauk, B.H. Comparative investigation of the energetic ion spectra comprising the magnetospheric ring currents of the Solar System. J. Geophys. Res. [Space Phys.], 119 (12), 9729–9746, 2014. [CrossRef]
  • Mauk, B.H., and N.J. Fox. Electron radiation belts of the Solar System. J. Geophys. Res., 115, A12220, 2010, DOI: 10.1029/2010JA015660. [CrossRef]
  • Mauk, B.H., S.M. Krimigis, E.P. Keath, A.F. Cheng, and T.P. Armstrong. The hot plasma and radiation environment of the Uranian magnetosphere. J. Geophys. Res., 92, 15283–15308, 1987, DOI: 10.1029/ JA092iA13p15283. [CrossRef]
  • Mauk, B.H., E.P. Keath, M. Kane, M. Krimigis, A.F. Cheng, M.H. Acuna, T.P. Armstrong, and N.F. Ness. The magnetosphere of Neptune – hot plasmas and energetic particles. J. Geophys. Res. [Space Phys.], 96, 19061, 1991. [CrossRef]
  • Mauk, B.H., S.M. Krimigis, A.F. Cheng, and R.S. Selesnick. Energetic particles and hot plasmas of Neptune. In: D.P. Cruikshank, M.S. Matthews, and A.M. Schumann, Editors. Neptune and Triton, Astronomisches Rechen-Institut Publisher, Germany, 169–232, 1995.
  • Mauk, B.H., S.A. Gary, M. Kane, E.P. Keath, S.M. Krimigis, and T.P. Armstrong. Hot plasma parameters of Jupiter’s inner magnetosphere. J. Geophys. Res. [Space Phys.], 101, 7685–7696, 1996, DOI: 10.1029/96JA00006. [CrossRef]
  • Mauk, B.H., D.G. Mitchell, S.M. Krimigis, E.C. Roelof, and C.P. Paranicas. Energetic neutral atoms from a trans-Europa gas torus at Jupiter. Nature, 421, 920–922, 2003, DOI: 10.1038/nature01431. [CrossRef]
  • Mauk, B.H., D.C. Hamilton, T.W. Hill, G.B. Hospodarsky, R.E. Johnson, et al. Fundamental plasma processes in Saturn’s magnetosphere. In: M.K. Dougherty, L.W. Esposito, and S.M. Krimigis, Editors. Saturn from Cassini-Huygens, Springer Science+Business Media B.V, Heidelberg, 281, 2009. [CrossRef]
  • Mavromichalaki, H., A. Papaioannou, C. Plainaki, C. Sarlanis, G. Souvatzoglou, et al. Applications and usage of the real-time Neutron Monitor Database. Adv. Space Res., 47 (12), 2210–2222, 2011, DOI: 10.1016/j.asr.2010.02.019. [CrossRef]
  • Mays, M.L., N.P. Savani, G. Collinson, A. Taktakishvili, P.J. MacNeice, and Y. Zheng. Propagation of the 2014 January 7 CME and resulting geomagnetic non-event. Astrophys. J., 812, 145, 2015. [NASA ADS] [CrossRef]
  • McAndrews, H.J., C.J. Owen, M.F. Thomsen, B. Lavraud, A.J. Coates, M.K. Dougherty, and D.T. Young. Evidence for reconnection at Saturn’s magnetopause. J. Geophys. Res. [Space Phys.], 113, A04210, 2008, DOI: 10.1029/2007JA012581. [CrossRef]
  • McClintock, W.E., and M.R. Lankton. The Mercury atmospheric and surface composition spectrometer for the MESSENGER mission. Space Sci. Rev., 131 (1–4), 481–521, 2007. [CrossRef]
  • McComas, D.J., F. Allegrini, P. Bochsler, M. Bzowski, E.R. Christian, et al. Global observations of the interstellar interaction from the Interstellar Boundary Explorer (IBEX). Science, 326 (5955), 959, 2009. [NASA ADS] [CrossRef] [PubMed]
  • McEwen, A.S. Exogenic and endogenic albedo and color patterns on Europa. J. Geophys. Res., 91, 8077–8097, 1986. [CrossRef]
  • McGrath, M.A., E. Lellouch, D.F. Strobel, P.D. Feldman, and R.E. Johnson. Satellite atmospheres. In: F. Bagenal, T. Dowling, and W. McKinnon, Editors. Jupiter: The Planet, Satellites and Magnetosphere, Cambridge University Press, UK, 457–483, 2004.
  • McGrath, M.A., X. Jia, K. Retherford, P.D. Feldman, D.F. Strobel, and J. Saur. Aurora on Ganymede. J. Geophys. Res. [Space Phys.], 118, 2043–2054, 2013, DOI: 10.1002/jgra.50122. [CrossRef]
  • McKinnon, W.B., and R.L. Kirk. In: L.-A. McFadden, P.R. Weissman, and T.V. Weissman, Editors. Encyclopedia of the Solar System, Academic Press, Elsevier Ed., UK, 483–502, ISBN: 978-0-12-088589-3, Chapter 26, 2007. [CrossRef]
  • McNutt, R.L., J.W. Belcher, and H.S. Bridge. Positive ion observations in the middle magnetosphere of Jupiter. J. Geophys. Res. [Space Phys.], 86, 8319–8342, 1981, DOI: 10.1029/JA086iA10p08319. [CrossRef]
  • Melin, H., D.E. Shemansky, and X. Liu. The distribution of atomic hydrogen and oxygen in the magnetosphere of Saturn. Planet. Space Sci., 57, 1743–1753, 2009, DOI: 10.1016/j.pss.2009.04.014. [NASA ADS] [CrossRef]
  • Meredith, C.J., S.W.H. Cowley, and J.D. Nichols. Survey of Saturn auroral storms observed by the Hubble Space Telescope: implications for storm time scales. J. Geophys. Res. [Space Phys.], 119, 9624–9642, 2014, DOI: 10.1002/2014JA020601. [CrossRef]
  • Merka, J., A. Szabo, J. Šafránková, and Z. Němeček. Earth’s bow shock and magnetopause in the case of a field-aligned upstream flow: Observation and model comparison. J. Geophys. Res. [Space Phys.], 108 (A7), SMP 2-1, 2007, DOI: 10.1029/2002JA009697.
  • Michael, M., S.N. Tripathi, W.J. Borucki, and R.C. Whitten. Highly charged cloud particles in the atmosphere of Venus. J. Geophys. Res., 114, E04008, 2009, DOI: 10.1029/2008JE003258. [CrossRef]
  • Milan, S.E., B. Hubert, and A. Grocott. Formation and motion of a transpolar arc in response to dayside and nightside reconnection. J. Geophys. Res. [Space Phys.], 110, A01212, 2005, DOI: 10.1029/2004JA010835.
  • Mileikowsky, C., F.A. Cucinotta, J.W. Wilson, B. Gladman, G. Horneck, et al. Natural transfer of viable microbes in space. Icarus, 145, 391–427, 2000, DOI: 10.1006/icar.1999.6317. [CrossRef]
  • Milillo, A., P. Wurz, S. Orsini, D. Delcourt, E. Kallio, et al. Surface-exosphere-magnetosphere system of Mercury. Space Sci. Rev., 117 (3–4), 397–443, 2005. [CrossRef]
  • Milillo, A., M. Fujimoto, E. Kallio, S. Kameda, F. Leblanc, et al. The BepiColombo mission: an outstanding tool for investigating the Hermean environment. Planet. Space Sci., 58 (1), 40–60, 2010, DOI: 10.1016/j.pss.2008.06.005. [CrossRef]
  • Milillo, A., C. Plainaki, E. De Angelis, V. Mangano, S. Massetti, A. Mura, S. Orsini, and R. Rispoli. Analytical model of Europa’s O2 exosphere. Planet. Space Sci., 2015, in press, DOI: 10.1016/j.pss.2015.10.011.
  • Miller, S., A. Aylward, and G. Millward. Giant planet ionospheres and thermospheres: the importance of ion-neutral coupling. Space Sci. Rev., 116 (1), 319–343, 2005. [CrossRef]
  • Mitchell, D.G., F. Kutchko, D.J. Williams, T.E. Eastman, L.A. Frank, and C.T. Russell. An extended study of the low‐latitude boundary layer on the dawn and dusk flanks of the magnetosphere. J. Geophys. Res. [Space Phys.], 92 (A7), 7394–7404, 1987. [CrossRef]
  • Mitchell, D.G., S.M. Krimigis, C. Paranicas, P.C. Brandt, J.F. Carbary, et al. Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn’s magnetosphere, and its relationship to auroral UV and radio emissions. Planet. Space Sci., 57, 1732–1742, 2009, DOI: 10.1016/j.pss.2009.04.002. [CrossRef]
  • Miyasaka, H., K. Nagata, T. Doke, J. Kikuchi, K. Maezawa, et al. Solar energetic particles events observed with EIS onboard NOZOMI spacecraft. 28th International Cosmic Ray Conference, 1, 3265, 2003.
  • Miyoshi, Y., H. Misawa, A. Morioka, T. Kondo, Y. Koyama, and J. Nakajima. Observation of short-term variation of Jupiter’s synchrotron radiation. Geophys. Res. Lett., 26, 9–12, 1999, DOI: 10.1029/1998GL900244. [NASA ADS] [CrossRef]
  • Molina-Cuberos, G. Cosmic ray and UV radiation models on the ancient Martian surface. Icarus, 154, 216–222, 2001, DOI: 10.1006/icar.2001.6658. [CrossRef]
  • Molina-Cuberos, G.J., J.J. López-Moreno, R. Rodrigo, H. Lichtenegger, and K. Schwingenschuh. A model of the Martian ionosphere below 70 km. Adv. Space Res., 27, 1801–1806, 2001, DOI: 10.1016/S0273-1177(01)00342-8. [CrossRef]
  • Montmessin, F., J.-L. Bertaux, F. Lefèvre, E. Marcq, D. Belyaev, et al. A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus, 216 (1), 82–85, 2011, DOI: 10.1016/j.icarus.2011.08.010. [NASA ADS] [CrossRef]
  • Moore, M.H. Studies of proton-irradiated SO2 at low temperatures implications for Io. Icarus, 59, 114–128, 1984, DOI: 10.1016/0019-1035(84)90059-9. [NASA ADS] [CrossRef]
  • Moses, J.I., B. Bézard, E. Lellouch, G.R. Gladstone, H. Feuchtgruber, and M. Allen. Photochemistry of Saturn’s atmosphere. I. Hydrocarbon chemistry and comparisons with ISO observations. Icarus, 143 (2), 244–298, 2000. [NASA ADS] [CrossRef]
  • Mura, A., S. Orsini, A. Milillo, A.M. Di Lellis, and E. De Angelis. Neutral atom imaging at Mercury. Planet. Space Sci., 54, 144–152, 2006. [CrossRef]
  • Mura, A., P. Wurz, H.I.M. Lichtenegger, H. Schleicher, H. Lammer, et al. The sodium exosphere of Mercury: comparison between observations during Mercury’s transit and model results. Icarus, 200 (1), 1–11, 2009. [NASA ADS] [CrossRef]
  • Müller-Wodarg, I.C.F., L. Moore, M. Galand, S. Miller, and M. Mendillo. Magnetosphere-atmosphere coupling at Saturn: 1 – Response of thermosphere and ionosphere to steady state polar forcing. Icarus, 221 (2), 481–494, 2012, DOI: 10.1016/j.icarus.2012.08.034. [CrossRef]
  • Nagy, A.F., A.J. Kliore, M. Mendillo, S. Miller, L. Moore, J.I. Moses, I. Müller-Wodarg, D. Shemansky, and M.K. Dougherty. Upper Atmosphere and Ionosphere of Saturn. In: M.K. Dougherty, et al., Editors. Saturn from Cassini-Huygens, Springer Science + Business Media B.V., Germany, 2009, DOI: 10.1007/978-1-4020-9217-6_8.
  • Ness, N.F., M.H. Acuña, L.F. Burlaga, J.E.P. Connerney, and R.P. Lepping. Magnetic fields at Neptune. Science, 233, 85–89, 1986. [CrossRef] [PubMed]
  • Ness, N., M.H. Acuna, L.F. Burlaga, J.E.P. Connerney, R.P. Lepping, and F.N. Neubauer. Magnetic fields at Neptune. Science, 246 (4936), 1473–1478, 1989. [NASA ADS] [CrossRef]
  • Nichols, J.D., S.W.H. Cowley, and D.J. McComas. Magnetopause reconnection rate estimates for Jupiter’s magnetosphere based on interplanetary measurements at 5AU. Ann. Geophys., 24 (1), 393–406, 2006, DOI: 10.5194/angeo-24-393-2006. [CrossRef]
  • Nichols, J.D., E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. Gérard, D. Grodent, and W.R. Pryor. Response of Jupiter’s UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign. J. Geophys. Res. [Space Phys.], 112, A02203, 2007, DOI: 10.1029/2006JA012005.
  • Nichols, J.D., J.T. Clarke, S.W.H. Cowley, J. Duval, A.J. Farmer, J.C. Gérard, D. Grodent, and S. Wannawichian. Oscillation of Saturn’s southern auroral oval. J. Geophys. Res. [Space Phys.], 113, A11205, 2008, DOI: 10.1029/2008JA013444. [CrossRef]
  • Nichols, J.D., J.T. Clarke, J.C. Gerard, and D. Grodent. Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, L08101, 2009a, DOI: 10.1029/2009GL037578.
  • Nichols, J.D., J.T. Clarke, J.C. Gérard, D. Grodent, and K.C. Hansen. Variation of different components of Jupiter’s auroral emission. J. Geophys. Res. [Space Phys.], 114, A06210, 2009b, DOI: 10.1029/2009JA014051.
  • Nichols, J.D., B. Cecconi, J.T. Clarke, S.W.H. Cowley, J.C. Gérard, A. Grocott, D. Grodent, L. Lamy, and P. Zarka. Variation of Saturn’s UV aurora with SKR phase. Geophys. Res. Lett., 37, L15102, 2010a, DOI: 10.1029/2010GL044057.
  • Nichols, J.D., S.W.H. Cowley, and L. Lamy. Dawn‐dusk oscillation of Saturn’s conjugate auroral ovals. Geophys. Res. Lett., 37, L24102, 2010b, DOI: 10.1029/2010GL045818.
  • Nichols, J.D., M.R. Burleigh, S.L. Casewell, S.W. Cowley, G.A. Wynn, J.T. Clarke, and A.A. West. Origin of electron cyclotron maser induced radio emissions at ultracool dwarfs: magnetosphere-ionosphere coupling currents. Astrophys. J., 760 (1), 59, 2012. [NASA ADS] [CrossRef]
  • Nichols, J.D., S.V. Badman, K.H. Baines, R.H. Brown, E.J. Bunce, et al. Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope. Geophys. Res. Lett., 41, 3323–3330, 2014, DOI: 10.1002/2014GL060186. [CrossRef]
  • Nilsson, H., N.J.T. Edberg, G. Stenberg, S. Barabash, M. Holmstrom, Y. Futaana, R. Lundin, and A. Fedorov. Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields. Icarus, 215, 475–484, 2011. [CrossRef]
  • Nishida, A. Reconnection in the Jovian magnetosphere. Geophys. Res. Lett., 10, 451–454, 1983. [CrossRef]
  • Nordheim, T.A., L.R. Dartnell, L. Desorgher, A.J. Coates, and G.H. Jones. Ionization of the Venusian atmosphere from solar and galactic cosmic rays. Icarus, 245, 80–86, 2015, DOI: 10.1016/j.icarus.2014.09.032. [CrossRef]
  • Norman, R.B., G. Gronoff, and C.J. Mertens. Influence of dust loading on atmospheric ionizing radiation on Mars. J. Geophys. Res. [Space Phys.], 119 (1), 452–461, 2014, DOI: 10.1002/2013JA019351. [CrossRef]
  • Ockert-Bell, M.E., J.A. Burns, I.J. Daubar, P.C. Thomas, J. Veverka, M.J.S. Belton, and K.P. Klaasen. The structure of Jupiter’s ring system as revealed by the Galileo imaging experiment. Icarus, 138, 188–213, 1999, DOI: 10.1006/icar.1998.6072. [NASA ADS] [CrossRef]
  • Odstrčil, D. Modeling 3-D solar wind structure. Adv. Space Res., 32 (4), 497–506, 2003. [NASA ADS] [CrossRef]
  • Odstrčil, D., and V.J. Pizzo. Three‐dimensional propagation of coronal mass ejections (CMEs) in a structured solar wind flow: 1. CME launched within the streamer belt. J. Geophys. Res. [Space Phys.], 104 (A1), 483–492, 1999a. [NASA ADS] [CrossRef]
  • Odstrčil, D., and V.J. Pizzo. Distortion of the interplanetary magnetic field by three‐dimensional propagation of coronal mass ejections in a structured solar wind. J. Geophys. Res. [Space Phys.], 104, 28225–28239, 1999b. [NASA ADS] [CrossRef]
  • Odstrčil, D., M. Dryer, and Z. Smith. Propagation of an interplanetary shock along the heliospheric plasma sheet. J. Geophys. Res. [Space Phys.], 101 (A9), 19973–19986, 1996. [CrossRef]
  • Odstrčil, D., P. Riley, and X.P. Zhao. Numerical simulation of the 12 May 1997 interplanetary CME event. J. Geophys. Res. [Space Phys.], 109, A02116, 2004, DOI: 10.1029/2003JA010135.
  • Ogilvie, K.W., and M.D. Desch. The wind spacecraft and its early scientific results. Adv. Space Res., 20 (4–5), 559–568, 1977. [CrossRef]
  • Orsini, S., S. Livi, K. Torkar, S. Barabash, A. Milillo, P. Wurz, A.M. Di Lellis, E. Kallio, and The SERENA team. SERENA: a suite of four instruments (ELENA, STROFIO, PICAM and MIPA) on board BepiColombo-MPO for particle detection in the Hermean environment. Planet. Space Sci., 58, 166–181, 2010. [CrossRef]
  • Orsini, S., V. Mangano, A. Mura, D. Turrini, S. Massetti, A. Milillo, and C. Plainaki. The influence of space environment on the evolution of Mercury. Icarus, 239, 281–290, 2014. [CrossRef]
  • Paranicas, C., W.R. Paterson, A.F. Cheng, B.H. Mauk, R.W. McEntire, L.A. Frank, and D.J. Williams. Energetic particle observations near Ganymede. J. Geophys. Res. [Space Phys.], 104, 17459–17470, 1999, DOI: 10.1029/1999JA900199. [CrossRef]
  • Parker, T.J. Channels and Valley networks associated with Argyre Planitia, Mars. Lunar and Planetary Institute Science Conference Abstracts, 20, 826, 1989.
  • Parker, T.J., D.S. Gorsline, R.S. Saunders, D.C. Pieri, and D.M. Schneeberger. Coastal geomorphology of the Martian northern plains. J. Geophys. Res., 98, 11061, 1993. [NASA ADS] [CrossRef]
  • Paschmann, G., S. Haaland, and R. Treumann. Auroral plasma physics. Space Sci. Rev., 103, 1–4, 2002, DOI: 10.1023/A:1023030716698. [CrossRef]
  • Pätzold, M., B. Häusler, M.K. Bird, S. Tellmann, R. Mattei, et al. The structure of Venus’ middle atmosphere and ionosphere. Nature, 450, 657–660, 2007. [NASA ADS] [CrossRef]
  • Pätzold, M., F.M. Neubauer, L. Carone, A. Hagermann, C. Stanzel, et al. MaRS: Mars express radio science experiment. In: K. Fletcher, Editor. Mars Express, ESA Communication Production Office, Noordwijk, The Netherlands, 217–245, 2009.
  • Pavlov, A.K., A.V. Blinov, and A.N. Konstantinov. Sterilization of Martian surface by cosmic radiation. Planet. Space Sci., 50, 669–673, 2002, DOI: 10.1016/S0032-0633(01)00113-1. [CrossRef]
  • Pavlov, A.A., G. Vasilyev, V.M. Ostryakov, A.K. Pavlov, and P. Mahaffy. Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays. Geophys. Res. Lett., 39, L13203, 2012, DOI: 10.1029/2012GL052166. [CrossRef]
  • Perry, M.E., B. Teolis, H.T. Smith, R.L. McNutt, G. Fletcher, W. Kasprzak, B. Magee, D.G. Mitchell, and J.H. Waite. Cassini INMS observations of neutral molecules in Saturn’s E-ring. J. Geophys. Res. [Space Phys.], 115, A10206, 2010, DOI: 10.1029/2010JA015248. [NASA ADS] [CrossRef]
  • Peter, K., M. Pätzold, G. Molina-Cuberos, O. Witasse, F. González-Galindo, et al. The dayside ionospheres of Mars and Venus: comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations. Icarus, 233, 66–82, 2014, DOI: 10.1016/j.icarus.2014.01.028. [CrossRef]
  • Phillips, J.L., A.I.F. Stewart, and J.G. Luhmann. The Venus ultraviolet aurora: observations at 130.4 nm. Geophys. Res. Lett., 13 (10), 1047–1050, 1986. [CrossRef]
  • Piccialli, A., F. Montmessin, D. Belyaev, A. Mahieux, A. Fedorova, et al. Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express. Planet. Space Sci., 113–114, 321–335, 2015, DOI: 10.1016/j.pss.2014.12.009. [NASA ADS] [CrossRef]
  • Pinilla-Alonso, N., T.L. Roush, G.A. Marzo, D.P. Cruikshank, and C.M. Dalle Ore. Iapetus surface variability revealed from statistical clustering of a VIMS mosaic: the distribution of CO2. Icarus, 215, 75–82, 2011, DOI: 10.1016/j.icarus.2011.07.004. [CrossRef]
  • Plainaki, C., A. Belov, E. Eroshenko, H. Mavromichalaki, and V. Yanke. Modeling ground level enhancements: event of 20 January 2005. J. Geophys. Res., 112, 4102, 2007. [CrossRef]
  • Plainaki, C., A. Milillo, A. Mura, S. Orsini, and T. Cassidy. Neutral particle release from Europa’s surface. Icarus, 210, 385–395, 2010a, DOI: 10.1016/j.icarus.2010.06.041. [CrossRef]
  • Plainaki, C., H. Mavromichalaki, A. Belov, E. Eroshenko, M. Andriopoulou, and V. Yanke. A new version of the Neutron monitor based anisotropic GLE model: application to GLE60. Sol. Phys., 264 (1), 239–254, 2010b, DOI: 10.1007/s11207-010-9576-6. [CrossRef]
  • Plainaki, C., A. Milillo, A. Mura, S. Orsini, S. Massetti, and T. Cassidy. The role of sputtering and radiolysis in the generation of Europa exosphere. Icarus, 218 (2), 956–966, 2012, DOI: 10.1016/j.icarus.2012.01.0232012. [CrossRef]
  • Plainaki, C., A. Milillo, A. Mura, J. Saur, S. Orsini, and S. Massetti. Exospheric O2 densities at Europa during different orbital phases. Planet. Space Sci., 88, 42–52, 2013. [CrossRef]
  • Plainaki, C., H. Mavromichalaki, M. Laurenza, M. Gerontidou, A. Kanellakopoulos, and M. Storini. The ground-level enhancement of 2012 may 17: derivation of solar proton event properties through the application of the NMBANGLE PPOLA model. Astrophys. J., 785, 160, 2014, DOI: 10.1088/0004-637X/785/2/160. [CrossRef]
  • Plainaki, C., A. Milillo, S. Massetti, A. Mura, X. Jia, S. Orsini, V. Mangano, E. De Angelis, and R. Rispoli. The H2O and O2 exospheres of Ganymede: the result of a complex interaction between the Jovian magnetospheric ions and the icy moon. Icarus, 245, 306–319, 2015, DOI: 10.1016/j.icarus.2014.09.018. [CrossRef]
  • Plainaki, C., P. Paschalis, D. Grassi, H. Mavromichalaki, and M. Andriopoulou. Solar energetic particle interactions with the Venusian atmosphere. Ann. Geophys., 34, 595–608, 2016, DOI: 10.5194/angeo-34-595-2016. [CrossRef]
  • Porco, C., D. DiNino, and F. Nimmo. How the geysers, tidal stresses, and thermal emission across the South polar terrain of Enceladus are related. Astrophys. J., 148, 45, 2014, DOI: 10.1088/0004-6256/148/3/45.
  • Porco, C.C., E. Baker, J. Barbara, K. Beurle, A. Brahic, et al. Imaging of Titan from the Cassini spacecraft. Nature, 434 (7030), 159–168, 2005. [NASA ADS] [CrossRef]
  • Potter, A.E., C.M. Anderson, R.M. Killen, and T.H. Morgan. Ratio of sodium to potassium in the Mercury exosphere. J. Geophys. Res., 107, 6, 2002, DOI: 10.1029/2000JE001493.
  • Pudovkin, M.I., B.P. Besser, and S.A. Zaitsev. Magnetopause stand-off distance in dependence on the magnetosheath and solar wind parameters. Ann. Geophys., 16, 388–396, 1998. [CrossRef]
  • Radioti, A., J.-C. Gérard, D. Grodent, B. Bonfond, N. Krupp, and J. Woch. Discontinuity in Jupiter’s main auroral oval. J. Geophys. Res. [Space Phys.], 113, A01215, 2008a, DOI: 10.1029/2007JA012610. [CrossRef]
  • Radioti, A., D. Grodent, J.-C. Gérard, B. Bonfond, and J.T. Clarke. Auroral polar dawn spots: signatures of internally driven reconnection processes at Jupiter’s magnetotail. Geophys. Res. Lett., 35, L03104, 2008b, DOI: 10.1029/2007GL032460. [CrossRef]
  • Radioti, A., D. Grodent, J.-C. Gérard, E. Roussos, C. Paranicas, et al. Transient auroral features at Saturn: signatures of energetic particle injections in the magnetosphere. J. Geophys. Res., 114, A03210, 2009a, DOI: 10.1029/2008JA013632. [CrossRef]
  • Radioti, A., A.T. Tomás, D. Grodent, J.-C. Gérard, J. Gustin, B. Bonford, N. Krupp, J. Woch, and J.D. Menietti. Equatorward diffuse auroral emissions at Jupiter: simultaneous HST and Galileo observations. Geophys. Res. Lett., 36, L07101, 2009b, DOI: 10.1029/2009GL037857.
  • Radioti, A., D. Grodent, J.-C. Gérard, and B. Bonfond. Auroral signatures of flow bursts released during magnetotail reconnection at Jupiter. J. Geophys. Res. [Space Phys.], 115, A07214, 2010, DOI: 10.1029/2009JA014844. [CrossRef]
  • Radioti, A., D. Grodent, J.-C. Gérard, M.F. Vogt, M. Lystrup, and B. Bonfond. Nightside reconnection at Jupiter: auroral and magnetic field observations from 26 July 1998. J. Geophys. Res. [Space Phys.], 116, A03221, 2011a, DOI: 10.1029/2010JA016200.
  • Radioti, A., D. Grodent, J.-C. Gérard, S.E. Milan, B. Bonfond, J. Gustin, and W. Pryor. Bifurcations of the main auroral ring at Saturn: ionospheric signatures of consecutive reconnection events at the magnetopause. J. Geophys. Res. [Space Phys.], 116, A11209, 2011b, DOI: 10.1029/2011JA016661.
  • Radioti, A., E. Roussos, D. Grodent, J.-C. Gérard, N. Krupp, D.G. Mitchell, J. Gustin, B. Bonfond, and W. Pryor. Signatures of magnetospheric injections in Saturn’s aurora. J. Geophys. Res. [Space Phys.], 118, 1922–1933, 2013a, DOI: 10.1002/jgra.50161. [CrossRef]
  • Radioti, A., D. Grodent, J.-C. Gérard, B. Bonfond, J. Gustin, W. Pryor, J.M. Jasinski, and C.S. Arridge. Auroral signatures of multiple magnetopause reconnection at Saturn. Geophys. Res. Lett., 40, 4498–4502, 2013b, DOI: 10.1002/grl.50889. [CrossRef]
  • Radioti, A., D. Grodent, J.-C. Gérard, S.E. Milan, R.C. Fear, C.M. Jackman, B. Bonfond, and W. Pryor. Saturn’s elusive nightside polar arc. Geophys. Res. Lett., 41, 6321–6328, 2014, DOI: 10.1002/2014GL061081. [CrossRef]
  • Radioti, A., D. Grodent, X. Jia, J.C. Gerard, B. Bonfond, W. Pryor, J. Gustin, D.G. Mitchell, and C.M. Jackman. A multi-scale magnetotail reconnection event at Saturn and associated flows: Cassini/UVIS observations. Icarus, 263 (1), 75–82, 2016, DOI: 10.1016/j.icarus.2014.12.016. [CrossRef]
  • Raines, J.M., D.J. Gershman, T.H. Zurbuchen, M. Sarantos, and J.A. Slavin. Distribution and compositional variations of plasma ions in Mercury’s space environment: the first three Mercury years of MESSENGER observations. J. Geophys. Res., 118 (4), 1604–1619, 2013. [CrossRef]
  • Raines, J.M., D.J. Gershman, J.A. Slavin, T.H. Zurbuchen, H. Korth, B.J. Anderson, and S.C. Solomon. Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions. J. Geophys. Res. [Space Phys.], 119, 6587–6602, 2014, DOI: 10.1002/2014JA020120. [CrossRef]
  • Rairden, R.L., L.A. Frank, and J.D. Craven. Geocoronal imaging with Dynamics Explorer. J. Geophys. Res., 91 (A12), 13613–13630, 1986, DOI: 10.1029/JA091iA12p13613. [CrossRef]
  • Reames, D.V. Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev., 90, 413, 1999, DOI: 10.1023/A:1005105831781. [NASA ADS] [CrossRef]
  • Richard, M.S., T.E. Cravens, C. Wylie, D. Webb, Q. Chediak, et al. An empirical approach to modeling ion production rates in Titan’s ionosphere II: ion production rates on the nightside. J. Geophys. Res. [Space Phys.], 120, 1281–1298, 2015a, DOI: 10.1002/2014JA020343. [CrossRef]
  • Richard, M.S., T.E. Cravens, C. Wylie, D. Webb, Q. Chediak, et al. An empirical approach to modeling ion production rates in Titan’s ionosphere I: ion production rates on the dayside and globally. J. Geophys. Res. [Space Phys.], 120, 1264–1280, 2015b, DOI: 10.1002/2013JA019706. [CrossRef]
  • Richardson, J.D. The solar wind and its interaction with the interstellar medium. In: N. Gopalswamy, et al., Editors. Heliophysical Processes, Springer-Verlag Berlin Heidelberg, Germany, Astrophysics and Space Science, 83 Proceedings, 83, 2010, DOI: 10.1007/978-3-642-11341-3_6. [CrossRef]
  • Richardson, J.D., J.W. Belcher, M. Zhang, and R.L. McNutt Jr. Low-energy ions near Neptune. J. Geophys. Res. [Space Phys.], 96 (18), 993, 1991.
  • Richardson, J.D., C. Wang, and L.F. Burlaga. The solar wind in the outer heliosphere. Adv. Space Res., 34 (1), 150–156, 2004, DOI: 10.1016/j.asr.2003.03.066. [CrossRef]
  • Richer, E., R. Modolo, G.M. Chanteur, S. Hess, and F. Leblanc. A global jybrid model for Mercury’s interaction with the solar wind: case study of the dipole representation. J. Geophys. Res., 117, A10228, 2012. [NASA ADS] [CrossRef]
  • Rostoker, G., S.-I. Akasofu, J. Foster, R.A. Greenwald, Y. Kamide, K. Kawasaki, A.T.Y. Lui, R.L. Mcpherron, and C.T. Russell. Magnetospheric substorms – definition and signatures. J. Geophys. Res., 85 (A4), 1663–1668, 1980. [CrossRef]
  • Roth, L., J. Saur, K.D. Retherford, D.F. Strobel, P.D. Feldman, M.A. McGrath, and F. Nimmo. Transient water vapor at Europa’s south pole. Science, 343, 171–174, 2014a, DOI: 10.1126/science.1247051. [NASA ADS] [CrossRef]
  • Roth, L., K.D. Retherford, J. Saur, D.F. Strobel, P.D. Feldman, M.A. McGrath, and F. Nimmo. Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa’s water vapor aurora. Proc. Nat. Acad. Sci. U.S.A., 111 (48), E5123–E5132, 2014b. [CrossRef]
  • Roth, L., J. Saur, K.D. Retherford, D.F. Strobel, P.D. Feldman, M.A. McGrath, J.R. Spencer, A. Blöcker, and N. Ivchenko. Europa’s far ultraviolet oxygen aurora from a comprehensive set of HST observations. J. Geophys. Res. [Space Phys.], 121, 2143–2170, 2016, DOI: 10.1002/2015JA022073. [CrossRef]
  • Roussos, E., G.H. Jones, N. Krupp, C. Paranicas, D.G. Mitchell, et al. Electron microdiffusion in the Saturnian radiation belts: Cassini MIMI/LEMMS observations of energetic electron absorption by the icy moons. J. Geophys. Res. [Space Phys.], 112, 6214, 2007, DOI: 10.1029/2006JA012027. [CrossRef]
  • Roussos, E., N. Krupp, T.P. Armstrong, C. Paranicas, D.G. Mitchell, et al. Discovery of a transient radiation belt at Saturn. Geophys. Res. Lett., 35, L22106, 2008, DOI: 10.1029/2008GL035767. [NASA ADS] [CrossRef]
  • Roussos, E., N. Krupp, C. Paranicas, J.F. Carbary, P. Kollmann, S.M. Krimigis, and D.G. Mitchell. The variable extension of Saturn’s electron radiation belts. Planet. Space Sci., 104, 3–17, 2014, DOI: 10.1016/j.pss.2014.03.021. [CrossRef]
  • Russell, C.T., and R.C. Elphic. ISEE observations of flux transfer events at the dayside magnetopause. Geophys. Res. Lett., 6, 33–36, 1979, DOI: 10.1029/GL006i001p00033. [CrossRef]
  • Russell, C.T., and F.L. Scarf. Evidence for lightning on Venus. Adv. Space Res., 10, 125–136, 1990, DOI: 10.1016/0273-1177(90)90173-W. [CrossRef]
  • Russell, C.T., K.K. Khurana, M.G. Kivelson, and D.E. Huddleston. Substorms at Jupiter: Galileo observations of transient reconnection in the near tail. Adv. Space Sci., 261 (10), 1499–1504, 2000. [CrossRef]
  • Russell, C.T., T.L. Zhang, M. Delva, W. Magnes, R.J. Strangeway, and H.Y. Wei. Lightning on Venus inferred from whistler-mode waves in the ionosphere. Nature, 450, 661–662, 2007, DOI: 10.1038/nature05930. [CrossRef] [PubMed]
  • Sack, N.J., R.E. Johnson, J.W. Boring, and R.A. Baragiola. The effect of magnetospheric ion bombardment on the reflectance of Europa’s surface. Icarus, 100, 534–540, 1992. [CrossRef]
  • Saganti, P.B., F.A. Cucinotta, J.W. Wilson, L.C. Simonsen, and C. Zeitlin. Radiation climate map for analyzing risks to astronauts on the mars surface from galactic cosmic rays. Space Sci. Rev., 110, 14–156, 2004. [CrossRef]
  • Samsonov, A.A., Z. Němeček, J. Šafránková, and K. Jelínek. Why does the subsolar magnetopause move sunward for radial interplanetary magnetic field? J. Geophys. Res., 117, A05221, 2012. [CrossRef]
  • Santos-Costa, D., and S.A. Bourdarie. Modeling the inner Jovian electron radiation belt including non-equatorial particles. Planet. Space Sci., 49, 303–312, 2001, DOI: 10.1016/S0032-0633(00)00151-3. [CrossRef]
  • Santos-Costa, D., R. Sault, S. Bourdarie, D. Boscher, S. Bolton, et al. Synchrotron emission images from three-dimensional modeling of the Jovian electron radiation belts. Adv. Space Res., 28, 915–918, 2001, DOI: 10.1016/S0273-1177(01)00527-0. [NASA ADS] [CrossRef]
  • Santos-Costa, D., M. Blanc, S. Maurice, and J.S. Bolton. Modelling the electron and proton radiation belts of Saturn. Geophys. Res. Lett., 30, 2059, 2003, DOI: 10.1029/2003GL017972. [CrossRef]
  • Sarantos, M., J.A. Slavin, M. Benna, S.A. Boardsen, R.M. Killen, D. Schriver, and P. Trávníček. Sodium-ion pickup observed above the magnetopause during MESSENGER’s first Mercury flyby: constraints on neutral exospheric models. Geophys. Res. Lett., 36 (4), L04106, 2009.
  • Saur, J., D.F. Strobel, and F.M. Neubauer. Interaction of the Jovian magnetosphere with Europa: constraints on the neutral atmosphere. J. Geophys. Res. [Space Phys.], 103, 19947–19962, 1998, DOI: 10.1029/97JE03556. [NASA ADS] [CrossRef]
  • Saur, J., N. Schilling, F.M. Neubauer, D.F. Strobel, S. Simon, M.K. Dougherty, C.T. Russell, and R.T. Pappalardo. Evidence for temporal variability of Enceladus’ gas jets: modeling of Cassini observations. Geophys. Res. Lett., 35, L20105, 2008, DOI: 10.1029/2008GL035811. [NASA ADS] [CrossRef]
  • Saur, J., P.D. Feldman, L. Roth, F. Nimmo, D.F. Strobel, et al. Hubble Space Telescope/advanced camera for surveys observations of Europa’s atmospheric ultraviolet emission at eastern elongation. Astrophys. J., 738, 153, 2011, DOI: 10.1088/0004-637X/738/2/153. [CrossRef]
  • Saur, J., S. Duling, L. Roth, X. Jia, D.F. Strobel, et al. The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals. J. Geophys. Res. [Space Phys.], 120, 1715–1737, 2015, DOI: 10.1002/2014JA020778. [CrossRef]
  • Schardt, A.W., and C.K. Goertz. High-energy particles. In: A.J. Dessler, Editor. Physics of the Jovian magnetosphere, Cambridge University Press, A83-26611 10-91 Cambridge and New York, 157–196, 1983. [CrossRef]
  • Schilling, N., F.M. Neubauer, and J. Saur. Time-varying interaction of Europa with the Jovian magnetosphere: constraints on the conductivity of Europa’s subsurface ocean. Icarus, 192, 41–55, 2007. [CrossRef]
  • Schippers, P., N. André, R.E. Johnson, M. Blanc, I. Dandouras, A.J. Coates, S.M. Krimigis, and D.T. Young. Identification of photoelectron energy peaks in Saturn’s inner neutral torus. J. Geophys. Res., 114 (A12), A12212, 2009. [CrossRef]
  • Schmidt, C.A., J.K. Wilson, J. Baumgardner, and M. Mendillo. Orbital effects on Mercury’s escaping sodium exosphere. Icarus, 207 (1), 9–16, 2010, DOI: 10.1016/j.icarus.2009.10.017 [CrossRef]
  • Schrijver, C.J. On a transition from solar-like coronae to rotation-dominated Jovian-like magnetospheres in ultracool main-sequence stars. Astrophys. J. Lett., 699 (2), L148–L152, 2009. [NASA ADS] [CrossRef]
  • Schunk, R., and A. Nagy. Ionospheres: Physics, Plasma Physics, and Chemistry. In: A.J. Dessler, J.R. Houghton, and M.J. Rycroft, Editors. 2nd edn., Cambridge Univ. Press, Cambridge, 2009. [CrossRef]
  • Scudder, J.D., E.C. Sittler, and H.S. Bridge. A survey of the plasma electron environment of Jupiter – a view from Voyager. J. Geophys. Res. [Space Phys.], 86, 8157–8179, 1981, DOI: 10.1029/JA086iA10p08157. [CrossRef]
  • Seki, K., N. Terada, M. Yagi, D.C. Delcourt, F. Leblanc, and T. Ogino. Effects of the surface conductivity and the IMF strength on the dynamics of planetary ions in Mercury’s magnetosphere. J. Geophys. Res. [Space Phys.], 118 (6), 3233–3242, 2013. [CrossRef]
  • Seki, K., A. Nagy, C.M. Jackman, F. Crary, D. Fontaine, et al. A review of general physical and chemical processes related to plasma sources and losses for Solar System magnetospheres. Space Sci. Rev., 192 (1–4), 27–89, 2015. [CrossRef]
  • Selesnick, R.S. Micro-and macro-signatures of energetic charged particles in planetary magnetospheres. Adv. Space Res., 13 (10), 221–230, 1993. [CrossRef]
  • Selesnick, R.S., and J.D. Richardson. Plasmasphere formation in arbitrarily oriented magnetospheres. Geophys. Res. Lett., 13, 624–627, 1986, DOI: 10.1029/GL013i007p00624. [CrossRef]
  • Sheel, V., S.A. Haider, P. Withers, K. Kozarev, I. Jun, S. Kang, G. Gronoff, and C. Simon Wedlund. Numerical simulation of the effects of a solar energetic particle event on the ionosphere of Mars. J. Geophys. Res., 117, A05312, 2012, DOI: 10.1029/2011JA017455 [CrossRef]
  • Shemansky, D.E., X. Liu, and H. Melin. The Saturn hydrogen plume. Planet. Space Sci., 57, 1659–1670, 2009, DOI: 10.1016/j.pss.2009.05.002. [CrossRef]
  • Shematovich, V.I., and R.E. Johnson. Near-surface oxygen atmosphere at Europa. Adv. Space Res., 27, 1881–1888, 2001, DOI: 10.1016/S0273-1177(01)00299-X. [CrossRef]
  • Shematovich, V.I., R.E. Johnson, J.F. Cooper, and M.C. Wong. Surface-bounded atmosphere of Europa. Icarus, 173, 480–498, 2005, DOI: 10.1016/j.icarus.2004.08.013. [CrossRef]
  • Showalter, M.R., J.A. Burns, J.N. Cuzzi, and J.B. Pollack. Jupiter’s ring system – new results on structure and particle properties. Icarus, 69, 458–498, 1987, DOI: 10.1016/0019-1035(87)90018-2. [NASA ADS] [CrossRef]
  • Sicard-Piet, A., S. Bourdarie, and N. Krupp. JOSE: a new Jovian specification environment model. IEEE Trans. Nucl. Sci., 58, 923–931, 2011, DOI: 10.1109/TNS.2010.2097276. [CrossRef]
  • Simon, S., H. Kriegel, J. Saur, and A. Wennmacher. Energetic aspects of Enceladus’ magnetospheric interaction. J. Geophys. Res. [Space Phys.], 118, 3430–3445, 2013a, DOI: 10.1002/jgra.50380. [CrossRef]
  • Simon, S., S.C. van Treeck, A. Wennmacher, J. Saur, F.M. Neubauer, C.L. Bertucci, and M.K. Dougherty. Structure of Titan’s induced magnetosphere under varying background magnetic field conditions: survey of Cassini magnetometer data from flybys TA-T85. J. Geophys. Res., 118, 1679–1699, 2013b, DOI: 10.1002/jgra.50096. [CrossRef]
  • Simon, S., J. Saur, S.C. Treeck, H. Kriegel, and M.K. Dougherty. Discontinuities in the magnetic field near Enceladus. Geophys. Res. Lett., 41, 3359–3366, 2014, DOI: 10.1002/2014GL060081. [CrossRef]
  • Simonsen, L.C., and J.E. Nealy. Mars surface radiation exposure for solar maximum conditions and 1989 solar proton events. NASA Technical Paper 3300, 1993.
  • Singer, S.F. Trapped albedo theory of the radiation belt. Phys. Rev. Lett., 1, 181–183, 1958, DOI: 10.1103/PhysRevLett.1.181. [CrossRef]
  • Sittler Jr., K.W. Ogilvie, E.C., and R. Selesnick. Survey of electrons in the Uranian magnetosphere – Voyager 2 observations. J. Geophys. Res. [Space Phys.], 92, 15263–15281, 1987, DOI: 10.1029/JA092iA13p15263. [CrossRef]
  • Sittler Jr., M. Thomsen, E.C., R.E. Johnson, R.E. Hartle, M. Burger, et al. Cassini observations of Saturn’s inner plasmasphere: saturn orbit insertion results. Planet. Space Sci., 541 (12), 1197–1210, 2006, DOI: 10.1016/j.pss.2006.05.038. [CrossRef]
  • Sittler, E., R.P. Hartle, C. Bertucci, A. Coates, A. Cravens, I. Dandouras, and D. Shemansky. Energy deposition processes in Titans upper atmosphere and its induced magnetosphere. In: R.H. Brown, et al., Editors. Titan from Cassini-Huygens, Springer Science+Business Media B.V, Heidelberg, 393–453, 2009. [CrossRef]
  • Sittler, E.C., J.F. Cooper, R.E. Hartle, W.R. Paterson, E.R. Christian, et al. Plasma ion composition measurements for Europa. Planet. Space Sci., 88, 26–41, 2013, DOI: 10.1016/j.pss.2013.01.013. [CrossRef]
  • Slanger, T.G., P.C. Cosby, D.L. Huestis, and T.A. Bida. Discovery of the atomic oxygen green line in the Venus night airglow. Science, 291 (5503), 463–465, 2001. [CrossRef]
  • Slanger, T.G., P.C. Cosby, D.L. Huestis, and R.R. Meier. Oxygen atom Rydberg emission in the equatorial ionosphere from radiative recombination. J. Geophys. Res. [Space Phys.], 109, A10309, 2004, DOI: 10.1029/2004JA010556. [CrossRef]
  • Slavin, J.A., and R.E. Holzer. The effect of erosion on the solar wind stand‐off distance at Mercury. J. Geophys. Res. [Space Phys.], 84 (A5), 2076–2082, 1979. [NASA ADS] [CrossRef]
  • Slavin, J.A., and R.E. Holzer. Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape. J. Geophys. Res., 86 (A13), 11401–11418, 1981, DOI: 10.1029/JA086iA13p11401. [CrossRef]
  • Slavin, J.A., R.E. Holzer, J.R. Spreiter, and S.S. Stahara. Planetary mach cones: theory and observation. J. Geophys. Res., 89, 2708, 1984. [CrossRef]
  • Slavin, J.A., B.J. Anderson, T.H. Zurbuchen, D.N. Baker, S.M. Krimigis, et al. MESSENGER observations of Mercury’s magnetosphere during northward IMF. Geophys. Res. Lett., 36, L02101, 2009, DOI: 10.1029/2008GL036158. [CrossRef]
  • Slavin, J.A., B.J. Anderson, D.N. Baker, M. Benna, S.A. Boardsen, et al. MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329 (5992), 665, 2010, DOI: 10.1126/science.1188067. [CrossRef]
  • Slavin, J.A., P.C. Frisch, H.-R. Müller, J. Heerikhuisen, N.V. Pogorelov, W.T. Reach, and G. Zank. Trajectories and distribution of interstellar dust grains in the heliosphere. Astrophys. J., 760 (1), 46, 2012a. [NASA ADS] [CrossRef]
  • Slavin, J.A., S.M. Imber, S.A. Boardsen, G.A. DiBraccio, and T. Sundberg. MESSENGER observations of a flux-transfer-event shower at Mercury. J. Geophys. Res., 117, A00M06, 2012b, DOI: 10.1029/2012JA017926.
  • Slavin, J.A., G.A. DiBraccio, D.J. Gershman, S.M. Imber, G.K. Poh, et al. MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. J. Geophys. Res., 119, 8087–8116, 2014. [CrossRef]
  • Smith, B.A., L.A. Soderblom, R. Beebe, J. Boyce, G. Briggs, et al. Galilean satellites and Jupiter – Voyager 2 imaging science results. Science, 206, 927–950, 1979. [CrossRef]
  • Smith, D.E., M.T. Zuber, R.J. Phillips, S.C. Solomon, S.A. Hauck II, et al. Gravity field and internal structure of Mercury from MESSENGER. Science, 336, 214–271, 2012, DOI: 10.1126/science.1218809. [NASA ADS] [CrossRef]
  • Smith, E.J., L. Davis, D.E. Jones, P.J. Coleman, D.S. Colburn, P. Dyal, and C.P. Sonett. Saturn’s magnetic field and magnetosphere. Science, 25, 407–410, 1980. [CrossRef]
  • Smith, G.R., D.E. Shemansky, J.B. Holberg, A.L. Broadfoot, B.R. Sandel, and J.C. McConnell. Saturn’s upper atmosphere from the Voyager 2 Euv solar and stellar occultations. J. Geophys. Res., 88 (A11), 8667–8678, 1983, DOI: 10.1029/JA088iA11p08667. [CrossRef]
  • Smith, H.T., R.E. Johnson, M.E. Perry, D.G. Mitchell, R.L. McNutt, and D.T. Young. Enceladus plume variability and the neutral gas densities in Saturn’s magnetosphere. J. Geophys. Res. [Space Phys.], 115, A10252, 2010, DOI: 10.1029/2009JA015184.
  • Smyth, W.H., and M.L. Marconi. Europa’s atmosphere, gas tori, and magnetospheric implications. Icarus, 181, 510–526, 2006, DOI: 10.1016/j.icarus.2005.10.019. [CrossRef]
  • Snowden, D., and R.V. Yelle. The global precipitation of magnetospheric electrons into Titan’s upper atmosphere. Icarus, 243, 1–15, 2014, DOI: 10.1016/j.icarus.2014.08.027. [CrossRef]
  • Solomon, S.C., R.L. McNutt Jr., R.E. Gold, and D.L. Domingue. MESSENGER mission overview. Space Sci. Rev., 131, 3–39, 2007, DOI: 10.1007/s11214-007-9247-6. [NASA ADS] [CrossRef]
  • Sonnerup, B.U.O. Magnetopause reconnection rate. J. Geophys. Res., 79 (10), 1546–1549, 1974, DOI: 10.1029/JA079i010p01546. [CrossRef]
  • Southwood, D.J., and M.G. Kivelson. A new perspective concerning the influence of the solar wind on the Jovian magnetosphere. J. Geophys. Res. [Space Phys.], 106, 6123–6130, 2001, DOI: 10.1029/2000JA000236. [NASA ADS] [CrossRef]
  • Southwood, D.J., and K.G. Kivelson. The source of Saturn’s periodic radio emission. J. Geophys. Res. [Space Phys.], 114, A09201, 2009, DOI: 10.1029/2008JA013800 [CrossRef]
  • Stallard, T.S., S. Miller, S.W.H. Cowley, and E.J. Bunce. Jupiter’s polar ionospheric flows: measured intensity and velocity variations poleward of the main auroral oval. Geophys. Res. Lett., 30, 1221, 2003, DOI: 10.1029/2002GL016031. [CrossRef]
  • Steffl, A.J., P.A. Delamere, and F. Bagenal. Cassini UVIS observations of the Io plasma torus. IV. Observations of temporal and azimuthal variability. Icarus, 194, 153–165, 2008. [CrossRef]
  • Stephan, K., R. Jaumann, R. Wagner, R.N. Clark, D.P. Cruikshank, et al. Dione’s spectral and geological properties. Icarus, 206, 631–652, 2010, DOI: 10.1016/j.icarus.2009.07.036. [NASA ADS] [CrossRef]
  • Stephan, K., R. Jaumann, R. Wagner, R.N. Clark, D.P. Cruikshank, et al. The Saturnian satellite Rhea as seen by Cassini VIMS. Planet. Space Sci., 61, 142–160, 2012, DOI: 10.1016/j.pss.2011.07.019. [NASA ADS] [CrossRef]
  • Stiepen, A., J.-C. Gérard, M. Dumont, C. Cox, and J.-L. Bertaux. Venus nitric oxide nightglow mapping from SPICAV nadir observations. Icarus, 226 (1), 428–436, 2013, DOI: 10.1016/j.icarus.2013.05.031. [CrossRef]
  • Stiepen, A., J.-C. Gérard, S. Bougher, F. Montmessin, B. Hubert, and J.-L. Bertaux. Mars thermospheric scale height: CO Cameron and CO2+ dayglow observations from Mars Express. Icarus, 245 (1), 295–305, 2015, DOI: 10.1016/j.icarus.2014.09.051. [CrossRef]
  • Storini, M., K. Kudela, E.G. Cordaro, and S. Massetti. Ground-level enhancements during solar cycle 23: results from SVIRCO, LOMNICKY STIT and LARC neutron monitors. Adv. Space Res., 35 (3), 416–420, 2005, DOI: 10.1016/j.asr.2004.12.020. [CrossRef]
  • Suess, S.T., and B.E. Goldstein. Compression of the Hermean magnetosphere by the solar wind. J. Geophys. Res., 84, 3306–3312, 1979. [CrossRef]
  • Sundberg, T., J.A. Slavin, S.A. Boardsen, B.J. Anderson, H. Korth, et al. MESSENGER observations of dipolarization events in Mercury’s magnetotail. J. Geophys. Res., 117, A00M03, 2012, DOI: 10.1029/2012JA017756.
  • Taylor, W.W.L., F.L. Scarf, C.T. Russell, and L.H. Brace. Evidence for lightning on Venus. Nature, 279, 614–616, 1979, DOI: 10.1038/279614a0. [CrossRef]
  • Teolis, B.D., and J.H. Waite. Cassini measurements show seasonal O2–CO2 exospheres and possible seasonal CO2 frosts at Rhea and Dione. 43rd Lunar Planet. Sci. Conf., Lunar and Planetary Institute, Houston, Texas, 2923, 2012.
  • Teolis, B.D., and J.H. Waite. Dione and Rhea seasonal exospheres revealed by Cassini CAPS and INMS. Icarus, 272, 277–289, 2016, DOI: 10.1016/j.icarus.2016.02.031. [CrossRef]
  • Teolis, B.D., G.H. Jones, P.F. Miles, R.L. Tokar, B.A. Magee, et al. Cassini finds an oxygen-carbon dioxide atmosphere at Saturn’s Icy Moon Rhea. Science, 330, 1813, 2010, DOI: 10.1126/science.1198366. [NASA ADS] [CrossRef]
  • Tokar, R.L., R.E. Johnson, T.W. Hill, D.H. Pontius, W.S. Kurth, et al. The interaction of the atmosphere of Enceladus with Saturn’s plasma. Science, 311, 1409–1412, 2006, DOI: 10.1126/science.1121061. [NASA ADS] [CrossRef] [PubMed]
  • Tokar, R.L., R.E. Johnson, M.F. Thomsen, E.C. Sittler, A.J. Coates, R.J. Wilson, F.J. Crary, D.T. Young, and G.H. Jones. Detection of exospheric O2+ at Saturn’s moon Dione. Geophys. Res. Lett., 39, L03105, 2012, DOI: 10.1029/2011GL050452. [CrossRef]
  • Trafton, L.M., S. Miller, T.R. Geballe, J. Tennyson, and G.E. Ballester. H2 Quadrupole and H3+ emission from Uranus: the uranian thermosphere, ionosphere, and auror. Astrophys. J., 524, 1059–1083, 1999, DOI: 10.1086/307838. [CrossRef]
  • Turc, L., L. Leclercq, F. Leblanc, R. Modolo, and J.Y. Chaufray. Modelling Ganymede’s neutral environment: a 3D test-particle simulation. Icarus, 229, 157–169, 2014. [CrossRef]
  • Turrini, D., R. Politi, R. Peron, D. Grassi, C. Plainaki, et al. The comparative exploration of the ice giant planets with twin spacecraft: unveiling the history of our Solar System. Planet. Space Sci., 104, 93–107, 2014, DOI: 10.1016/j.pss.2014.09.005. [CrossRef]
  • Van Allen, J.A. Absorption of energetic protons by Saturn’s Ring G. J. Geophys. Res. [Space Phys.], 88, 6911–6918, 1983, DOI: 10.1029/JA088iA09p06911. [CrossRef]
  • Van Allen, J.A. Energetic particles in the inner magnetosphere of Saturn. In: T. Gehrels, and M.S. Matthews, Editors. Saturn, The University of Arizona Press, Tucson, Arizona, 281–317, 1984.
  • Vasyliunas, V.M. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. [Space Phys.], 73, 2839–2884, 1968, DOI: 10.1029/JA073i009p02839. [NASA ADS] [CrossRef]
  • Vasyliunas, V.M. Plasma distribution and flow. In: A.J. Dessler, Editor. Physics of the Jovian magnetosphere, Cambridge University Press, A83-26611 10-91, Cambridge and New York, 395–453, 1983. [CrossRef]
  • Vasyliunas, V.M. The convection-dominated magnetosphere of Uranus. Geophys. Res. Lett., 13, 621–623, 1986, DOI: 10.1029/GL013i007p00621. [CrossRef]
  • Vervack, R.J., W.E. McClintock, R.M. Killen, A.L. Sprague, B.J. Anderson, et al. Mercury’s complex exosphere: results from MESSENGER’s third flyby. Science, 329 (5992), 672, 2010, [CrossRef] [PubMed]
  • Vidal-Madjar, A., A. Lecavelier des Etangs, J.-M. Désert, G.E. Ballester, R. Ferlet, et al. An extended upper atmosphere around the extrasolar planet HD209458b. Nature, 422, 143–146, 2003. [NASA ADS] [CrossRef] [PubMed]
  • Vigren, E., M. Galand, R.V. Yelle, J. Cui, J.-E. Wahlund, et al. On the thermal electron balance in Titan’s sunlit upper atmosphere. Icarus, 223, 234–251, 2013, DOI: 10.1016/j.icarus.2012.12.010. [CrossRef]
  • Vilas, F., C.R. Chapman, and M. Mathews. Mercury. Univ. Arizon Press, Tucson, Arizona, USA, 1988.
  • Vogt, M.F., M.G. Kivelson, K.K. Khurana, S.P. Joy, and R.J. Walker, Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res., 115 (A6), A06219, 2010, DOI: 10.1029/2009JA015098
  • Voigt, G.-H., T.W. Hill, and A.J. Dessler. The magnetosphere of Uranus – plasma sources, convection, and field configuration. Astrophys. J., 266, 390–401, 1983, DOI: 10.1086/160787. [CrossRef]
  • Volwerk, M., X. Jia, C. Paranicas, W.S. Kurth, M.G. Kivelson, and K.K. Khurana. ULF waves in Ganymede’s upstream magnetosphere. Ann. Geophys., 31, 45–59, 2013. [CrossRef]
  • Von Zahn, U., S. Kumar, H. Niemann, and R. Prinn. Composition of the Venus atmosphere. In: D.M. Hunten, L. Colin, T.M. Donahue, and V. I. Moroz, Editors. Venus, University of Arizona Press, Tucson, USA, 779–840, 1983.
  • Vorburger, A., P. Wurz, H. Lammer, S. Barabash, and O. Mousis. Monte-Carlo simulation of Callisto’s exosphere. Icarus, 262, 14–29, 2015, DOI: 10.1016/j.icarus.2015.07.035. [CrossRef]
  • Waite Jr., J.H., and T.E. Cravens. Current review of the Jupiter, Saturn, and Uranus ionospheres. Adv. Space Res., 7 (12), 119–134, 1987, DOI: 10.1016/0273-1177(87)90210-9. [CrossRef]
  • Waite Jr., T.E. Cravens, J.H., J. Kozyra, A.F. Nagy, S.K. Atreya, and R.H. Chen. Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere. J. Geophys. Res., 88 (8), 6143–6163, 1983, DOI: 10.1029/JA088iA08p06143. [NASA ADS] [CrossRef]
  • Waite, J.H., G.R. Gladstone, W.S. Lewis, R. Goldstein, D.J. McComas, et al. An auroral flare at Jupiter. Nature, 410, 787–789, 2001. [CrossRef]
  • Waite, J.H., W.S. Lewis, W.T. Kasprzak, V.G. Anicich, B.P. Block, et al., The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation, Space Sci. Rev., 114, 113–231, 2004, DOI: 10.1007/s11214-004-1408-2. [CrossRef]
  • Waite, J.H., H. Niemann, R.V. Yelle, W.T. Kasprzak, T.E. Cravens, et al. Ion Neutral Mass Spectrometer results from the first flyby of Titan. Science, 308, 982–986, 2005, DOI: 10.1126/science.1110652. [NASA ADS] [CrossRef] [PubMed]
  • Waite Jr., M.R. Combi, J.H., W.H. Ip, T.E. Cravens, R.L. McNutt Jr., et al. Cassini ion and neutral mass spectrometer: enceladus plume composition and structure. Science, 311, 1419–1422, 2006. [NASA ADS] [CrossRef] [PubMed]
  • Waite, J.H., D.T. Young, T.E. Cravens, A.J. Coates, F.J. Crary, B. Magee, and J. Westlake. The process of tholin formation in Titan’s upper atmosphere. Science, 316, 870–875, 2007. [NASA ADS] [CrossRef] [PubMed]
  • West, R.A., J.M. Ajello, M.H. Stevens, D.F. Strobel, G.R. Gladstone, J.S. Evans, and E.T. Bradley. Titan airglow during eclipse. Geophys. Res. Lett., 39 (1), 18204, 2012. [CrossRef]
  • Whitten, R.C., I.G. Poppoff, and J.S. Sims. The ionosphere of mars below 80 km altitude – I quiescent conditions. Planet. Space Sci., 19, 243–250, 1971, DOI: 10.1016/0032-0633(71)90203-0. [CrossRef]
  • Winslow, R.M., B.J. Anderson, C.L. Johnson, J.A. Slavin, H. Korth, M.E. Purucker, D.N. Baker, and S.C. Solomon. Mercury’s magnetopause and bow shock from MESSENGER magnetometer observations. J. Geophys. Res. [Space Phys.], 118 (5), 2213–2227, 2013, DOI: 10.1002/jgra.50237. [CrossRef]
  • Withers, P. Attenuation of radio signals by the ionosphere of Mars: theoretical development and application to MARSIS observations. Radio Sci., 46, RS2004, 2011, DOI: 10.1029/2010RS004450. [CrossRef]
  • Woch, J., N. Krupp, A. Lagg, B. Wilken, S. Livi, and D.J. Williams. Quasi-periodic modulations of the Jovian magnetotail. Geophys. Res. Lett, 25, 1253–1256, 1998. [CrossRef]
  • Woch, J., N. Krupp, K.K. Khurana, M.G. Kivelson, and A. Roux. Plasma sheet dynamics in the Jovian magnetotail: signatures for substorm-like processes? Geophys. Res. Lett., 26, 2137–2140, 1999. [CrossRef]
  • Woch, J., N. Krupp, and A. Lagg. Particle bursts in the Jovian magnetosphere: evidence for a near-Jupiter neutral line. Geophys. Res. Lett., 29 (7), 1138, 2002, DOI: 10.1029/2001GL014080. [CrossRef]
  • Wong, M.C., and R.E. Johnson. A three-dimensional azimuthally symmetric model atmosphere for Io 1. Photochemistry and the accumulation of a nightside atmosphere. J. Geophys. Res. [Space Phys.], 101, 23243–23254, 1996, DOI: 10.1029/96JE02510. [CrossRef]
  • Woodfield, E.E., R.B. Horne, S.A. Glauert, J.D. Menietti, and Y.Y. Shprits. The origin of Jupiter’s outer radiation belt. J. Geophys. Res. [Space Phys.], 119, 3490–3502, 2014, DOI: 10.1002/2014JA019891. [CrossRef]
  • Wu, X.-Y., J.L. Horwitz, and J.-N. Tu. Dynamic fluid kinetic (DyFK) simulation of auroral ion transport: synergistic effects of parallel potentials, transverse ion heating, and soft electron precipitation, J. Geophys. Res., 107 (A10), 1283–2002, DOI: 10.1029/2000JA000190. [CrossRef]
  • Wurz, P., and H. Lammer. Monte-Carlo simulation of Mercury’s exosphere. Icarus, 164, 1–13, 2003. [NASA ADS] [CrossRef]
  • Wurz, P., J.A. Whitby, U. Rohner, J.A. Martín-Fernández, H. Lammer, and C. Kolb. Self-consistent modelling of Mercury’s exosphere by sputtering, micro-meteorite impact and photon-stimulated desorption. Planet. Space Sci., 58 (12), 1599–1616, 2010. [NASA ADS] [CrossRef]
  • Yair, Y. New results on planetary lightning. Adv. Space Res., 50, 293–310, 2012, DOI: 10.1016/j.asr.2012.04.013. [NASA ADS] [CrossRef]
  • Yair, Y., G. Fischer, F. Simões, N. Renno, and P. Zarka. Updated review of planetary atmospheric electricity. Space Sci. Rev., 137, 29–49, 2008, DOI: 10.1007/s11214-008-9349-9. [CrossRef]
  • Yamauchi, M., and J.-E. Wahlund. Role of the ionosphere for the atmospheric evolution of planets. Astrobiology, 7 (5), 783–800, 2007, DOI: 10.1089/ast.2007.0140. [CrossRef]
  • Young, L.A., R.V. Yelle, R. Young, A. Seiff, and D.B. Kirk. Gravity waves in Jupiter’s thermosphere. Science, 276 (5309), 108–111, 1997. [CrossRef]
  • Zarka, P. Auroral radio emissions at the outer planets: observations and theories, J. Geophys. Res. [Planets], 103 (E9), 20159–20194, 1998. [NASA ADS] [CrossRef]
  • Zarka, P., B.M. Pedersen, A. Lecacheux, M.L. Kaiser, M.D. Desch, W.M. Farrell, and W.S. Kurth. Radio emissions from Neptune. In: D.P. Cruikshank, M.S. Matthews, and A.M. Schumann, Editors. Neptune and Triton, Astronomisches Rechen-Institut Publisher, Germany, 341–387, 1995.
  • Zurbuchen, T.H., J.M. Raines, G. Gloeckler, S.M. Krimigis, J.A. Slavin, et al. MESSENGER observations of the composition of Mercury’s ionized exosphere and plasma environment. Science, 321 (5885), 90, 2008. [CrossRef]
  • Zurbuchen, T.H., J.M. Raines, J.A. Slavin, D.J. Gershman, J.A. Gilbert, et al. MESSENGER observations of the spatial distribution of planetary ions near Mercury. Science, 333 (6051), 1862, 2011. [CrossRef]
  • Zwan, B.J., and R.A. Wolf. Depletion of solar-wind plasma near a planetary boundary. J. Geophys. Res., 81, 1636, 1976. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.