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ABSTRACT

The prediction of an extended solar minimum is extremely important because of the severity of its impact on the near-earth space.
Here, we present a new method for predicting the descent time of the forthcoming solar cycle (SC); the method is based on the
estimation of the Shannon entropy. We use the daily and monthly smoothed international sunspot number. For each nth SC,
we compute the parameter [Tpre]n by using information on the descent and ascent times of the n � 3th and nth SCs, respectively.
We find that [Tpre] of nth SC and entropy can be effectively used to predict the descent time of the n + 2th SC. The correlation
coefficient between [Td]n+2 � [Tpre]n and [E]n is found to be 0.95. Using these parameters the prediction model is developed.
Solar magnetic field and F10.7 flux data are available for SCs 21–22 and 19–23, respectively, and they are also utilized to get
estimates of the Shannon entropy. It is found that the Shannon entropy, a measure of randomness inherent in the SC, is reflected
well in the various proxies of the solar activity (viz sunspot, magnetic field, F10.7 flux). The applicability and accuracy of the
prediction model equation is verified by way of association of least entropy values with the Dalton minimum. The prediction
model equation also provides possible criteria for the occurrence of unusually longer solar minima.
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1. Introduction

Forecasting the solar cycle (SC) characteristics is an important
aspect of space weather studies. There are several statistical
and mathematical models that can be used for the prediction
of SC characteristics. These models utilize either precursor
or extrapolation methods (Ohl 1966; Feynman 1982; Wilson
1990; Thompson 1993; Hathaway et al. 1994; Wilson et al.
1998; Kane 1999; Solanki et al. 2002; Hathaway & Wilson
2006; Kane 2007; Podladchikova & Van der Linden 2011).
While some methods provide predictions well in advance or
close to the time of initiation of an upcoming SC, a few other
methods offer step-by-step predictions as an SC advances.
It has been shown that precursor methods show better perfor-
mance compared with other prediction methods (Li et al. 2001;
Brajsa et al. 2009). Some of the aforementioned methods are
based on a physical approach (Dikpati & Charbonneau 1999;
Schatten 2005; Dikpati et al. 2006; Dikpati & Gilman 2008;
Svalgaard et al. 2005) rather than a strictly numerical
approach. Pesnell (2008) examined over 50 forecasting meth-
ods and compared the amplitudes predicted by these methods
for SC 24. A careful scrutiny of available models suggests that
the focus of most studies has been on forecasting the peak
amplitude and ascent time of SCs, and little attention has been
paid to the prediction of the descent time of an upcoming SC.

Recently, predictions on the minimum of SC 24 have
failed, and its minimum was delayed by nearly two years.
Many interesting observations of the sun and near-earth envi-
ronment have been reported during this solar minimum
(McComas et al. 2008; De Toma et al. 2010; Echer et al.
2012; Solomon et al. 2013; Fröhlich 2013; Hajra et al.
2014). Haigh et al. (2010) found that during the declining

phase of solar cycle 23, there was a four to six times larger
decline in ultraviolet emissions. Past studies have reported
significant changes in the earth’s atmosphere during the
extended solar minimum, from 2007 to 2009 (Emmert et al.
2010; Ermolli et al. 2012). Hathaway & Upton (2014) showed
that meridional flow variations contributed to the weak polar
fields at the end of SC 23, leading to the extraordinary SC
23/24 minimum. Another important feature of solar activity
is the occurrence of a prolonged/grand minimum. Choudhuri
& Karak (2012) showed that 1–4% of SCs may have conditions
suitable for inducing a grand minima. Climatologists believe
that the frequent occurrence of prolonged low solar activity
periods may result in significant cooling of the earth’s atmo-
sphere. The peculiar extended minimum of SC 24 has raised
questions on future solar activity. An obvious question that
arose was, ‘‘Are we approaching a Maunder minimum or
Dalton minimum?’’ (Miyahara et al. 2010; Jager & Duhau
2012). The effect of the extended low solar activity period
on the near-earth environment is indeed a cause of concern.
Therefore, predictions of both the length and descent time of
SCs are of interest.

Presently, there are no methods to predict the descent time
of an upcoming SC. In this study, an empirical model is devel-
oped to predict the descent time of a forthcoming SC; the
model based on the estimation of the Shannon entropy. This
paper is structured as follows. The data used and Shannon
entropy computation are described in Section 2. The develop-
ment of the model is discussed in Section 3, and the results are
presented in Section 4. Possible clues to the occurrence of a
grand minimum are presented in Section 5, and implications
of the present work are elaborated in Section 6.
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2. Data used and Shannon entropy estimation

We use the daily and monthly smoothed international sunspot
numbers (available at http://ngdc.noaa.gov and http://sidc.
oma.be/sunspot-data), and they are denoted by S, and Sms,
respectively. It is well known, each SC is characterized by a
solar maximum Smax, a solar minimum Smin, an ascent time
Ta, a descent time Td, and a length Tcy. The occurrence times
of the solar minimum and solar maximum are considered as
the start time [ts]n and peak time [tp]n for each nth SC. The
end time of the nth SC is the start time of the (n + 1)th SC,
that is, [te]n = [ts]n+1. The length of the SC is obtained from
the relation [Tcy]n = [te]n � [ts]n. It should be noted that the
SC characteristics depend on the method adopted to determine
the solar maximum/minimum and their occurrence times.
These SC characteristics are provided by the NGDC-NOAA
(http://www.ngdc.noaa.gov/nndc/struts/results?t=102827&
s=1&d=8,4,9), and they are commonly used by the scien-
tific community for SC studies. In this method, the mini-
mum of an SC is determined by considering the number
of spotless days and the frequency of occurrence of old
and new cycle spot groups along with the mathematical
minima in the monthly smoothed sunspot number. Kakad
(2011) compared SC characteristics from NGDC-NOAA
with those obtained using a mathematical minimum and
found the SC characteristics obtained by both methods to
be in good agreement, with the deviation being very small.
Here, the SC characteristics are estimated using mathemat-
ical minima and maxima in the monthly smoothed sunspot
number. If a minimum (maximum) value is encountered
more than once, then we choose the first instance as the

start (peak) time. The SC characteristics obtained are
tabulated in Table 1. We also use the solar magnetic field
(B0) and F10.7 flux data from http://spidr.ngdc.noaa.gov;
these data are available only for the last two and last five
SCs, respectively.

The Shannon entropy has its origin in the information the-
ory (Shannon 1948), and it is a measure of the uncertainty
associated with a random variable. In recent times, it has been
widely used to understand various phenomena linked with
space weather, climate, and earth-related studies (Materassi
et al. 2007; Bapanayya et al. 2011; De Michelis et al. 2011).
As the first step, we compute the Shannon entropy for each
SC. For this computation, it is necessary to obtain variations
in the daily sunspot number, which is denoted by DS. A time
series related to any natural phenomenon such as sunspots is
non-stationary and needs to be transformed into a suitable form
for statistical analysis. This is accomplished by applying a
moving average filter to the time series (Carbone et al.
2004), which is akin to detrending the time series in order to
extract statistically meaningful information. In particular, ade-
quate caution should be exercised to avoid both under- and
oversmoothing of data (Das Sharma et al. 2012). Several mov-
ing average time window sizes (ws) are examined. In order to
impart stationarity to the SC time series, the moving average is
removed from the original time series, giving the following
stochastic sequence (DS):

�S ið Þ ¼ S ið Þ � 1

ws

Xk¼iþ ws�1ð Þ=2

k¼i� ws�1ð Þ=2

S kð Þ: ð1Þ

Table 1. SC characteristics (start time ts, peak time tp, ascent time Ta, descent time Td, length Tcy and solar maximum Smax) for SCs 1–23. The
model parameters Tpre and the Shannon entropy obtained using the histogram technique along with bin widths derived from Scott’s and Knuth’s
methods for ws = 9 are presented for SCs 10–23. Td (computed from Eq. (6)) and the absolute deviation (obtained from observed values of Td)
are presented in the last two columns. The predicted values are shown in bold. The epochs and time durations are in units of years.

Cy. no. SC characteristics Kunth’s
method

Scott’s
method

Error in
prediction

ts tp Ta Td Tcy Smax Tpre E Wk E Wk [Td]cal 1T d

1 1755.13 1761.46 6.33 4.92 11.25 86.50 – – – – – –
2 1766.38 1769.71 3.33 5.75 9.08 115.80 – – – – – –
3 1775.46 1778.38 2.92 6.33 9.25 158.50 – – – – – –
4 1784.71 1788.13 3.42 10.17 13.58 141.20 8.33 – – 5.75 – – –
5 1798.29 1805.13 6.83 5.00 11.83 49.20 12.58 – – 4.88 – – –
6 1810.13 1816.38 6.25 6.83 13.08 48.70 12.58 – – 5.17 – – –
7 1823.21 1829.88 6.67 4.00 10.67 71.50 16.83 – – 4.83 – – –
8 1833.88 1837.21 3.33 6.33 9.67 146.90 8.33 – – 5.78 – – –
9 1843.54 1848.13 4.58 7.83 12.42 131.90 11.42 – – 5.55 – – –
10 1855.96 1860.13 4.17 7.08 11.25 98.00 8.17 5.69 2.26 5.71 2.94 – –
11 1867.21 1870.63 3.42 8.33 11.75 140.30 9.75 5.63 1.41 5.70 3.00 – –
12 1878.96 1883.96 5.00 6.17 11.17 74.60 12.83 5.14 2.19 5.17 2.03 6.32 0.15
13 1890.13 1894.04 3.92 8.00 11.92 87.90 11.00 5.29 2.15 5.30 2.24 7.86 0.14
14 1902.04 1906.13 4.08 7.33 11.42 64.20 12.42 5.08 1.13 5.13 2.14 6.58 0.75
15 1913.46 1917.63 4.17 5.92 10.08 105.40 10.33 5.46 2.96 5.47 2.68 5.79 0.12
16 1923.54 1928.29 4.75 5.42 10.17 78.10 12.75 5.31 3.35 5.32 2.32 5.86 0.45
17 1933.71 1937.29 3.58 6.83 10.42 119.20 10.92 5.47 4.02 5.46 2.54 6.55 0.28
18 1944.13 1947.38 3.25 6.92 10.17 151.80 9.17 5.63 3.03 5.64 2.85 7.76 0.84
19 1954.29 1958.21 3.92 6.58 10.50 201.30 9.33 5.72 4.01 5.71 2.99 7.09 0.51
20 1964.79 1968.88 4.08 7.33 11.42 110.60 10.92 5.42 3.97 5.41 2.29 6.77 0.56
21 1976.21 1979.96 3.75 6.75 10.50 164.50 10.67 5.59 4.10 5.59 2.74 7.56 0.81
22 1986.71 1989.54 2.83 6.83 9.67 158.50 9.42 5.62 4.39 5.62 2.83 6.66 0.17
23 1996.38 2000.29 3.92 8.58 12.50 120.80 11.25 5.27 3.74 5.26 2.09 7.85 0.73
24 2008.88 – – – – – – – – – – 6.84 –
25 – – – – – – – – – – – 5.77 –
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This stochastic sequence is used for statistical analysis.
In the present analysis, we applied centered moving average
windows of various sizes (ws = 3, 5 . . . 15) to the daily sunspot
number data (S). The original and smoothed sunspot number
data for ws = 3, 9, and 15 are shown in Figures 1a–1c, respec-
tively, as an example. It can be observed that when ws = 15,
the moving average tends to oversmooth the original data,
whereas for ws = 3, the smoothed signal nearly represents
the original signal such that DS represents only the high-
frequency variations of the data. The optimal range of ws for
which adequate information on the sunspot variations is con-
tained in the new series (DS) is obtained to be 9–13. These
new series can now be used to compute the Shannon entropy.
In Figure 2a, we plot daily (red color) and monthly smoothed
(black color) sunspot number data for SCs 10–23. The vertical
dashed lines indicate the start (ts) time of SCs 10–24. In the
SCs prior to SC 10, several gaps exist in the daily sunspot data,
and hence, those cycles are excluded from the computation of
the entropy. As an illustration, in Figure 2b, we show the
change in the daily sunspot number centered on the nine-day
mean. Figures 2c and 2d show the variation of the mean solar
magnetic field and F10.7 flux for ws = 9 for the preceding two
and five SCs, respectively. For each SC, we estimate the
Shannon entropy by treating DS as a random variable.

The Shannon entropy is given by E ¼
�
Pl¼m

l¼1 pðxlÞ log2 ½pðxlÞ�, where x is a random variable with
m the number of outcomes and p(xl) the probability of xl.
The computation of entropy requires information on the prob-
ability distribution of the random variable p(xl). Here, we use
the probability density function computed from histograms to
obtain the entropy (Wallis 2006) and is given by Eq. (2):

E ¼ �
Xk¼N

k¼1

pk log2 ðpkÞ þ log2ðwkÞ ð2Þ

where pk is the probability and wk is the width of the kth bin
of the histogram. The parameter N represents the total

number of bins in the histogram. The estimated probability
density function (PDF) is such that

Pk¼N
k¼1 pk ¼ 1. It may be

noted that the shape of the probability density function
obtained from histograms is sensitive to the choice of the
bin size. In order to get appropriate estimates of the PDF
associated with DS, we determine the bin width by using
two methods: (i) Scott’s method and (ii) Knuth’s method.
In Scott’s method, the bin width wk is given by 3.49 · r/
m1/3, where r and m, respectively indicate the standard devi-
ation of DS and number of random observations (Scott 1979).
In the method presented by Knuth (2013), the number of bins
associated with the maximum posterior probability is consid-
ered as the optimum number of bins (binopt), and the width of
the histogram is taken as wk = (DS|max � DS|min)/binopt.
Figure 3 shows the variation of DS for ws = 9 and the corre-
sponding estimated PDF based on the histogram technique
for both Scott’s and Knuth’s optimum bin widths for SCs
21 (left panel) and 22 (right panel). The estimates of the
entropy and bin width are given in the corresponding sub-
plots. By applying both these binning methods and Eq. (2),
we compute the entropy for SCs 10–23 by utilizing DS
obtained for ws = 9, 11, and 13. As an example, the entropy
[E]n and bin width wk obtained by applying Scott’s and
Kunth’s methods to DS generated using ws = 9 are provided
in Table 1. It is to be noted that estimates of the entropy
obtained by using the optimum bin widths are the same for
both Scott’s and Knuth’s methods. Here, we use the entropy
computed using Scott’s method.

3. Development of the model

We treat the ascent [Ta] and descent [Td] times of the SC as two
variables. As a first step, we explored how the entropy of a nth
SC is related to the ascent and descent times of past, present,
and future SCs (in the range n � 3 to n + 2) by adopting a cor-
relation analysis. The search range n � 3 to n + 2 is found
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optimal by way of desirable number of data points (N = 12) to
carry out meaningful statistical evaluation. A correlation coef-
ficient between entropy of nth SC and [Ta], [Td] of n � 3 to
n + 2 SCs (total 12 parameters) is shown in Figure 4a for
ws = 9, 11, and 13. It is found that the good correlation

coefficients emerge from [E]n and (i) [Td]n�3, (ii) [Ta]n,
(iii) [Td]n+2 and it is consistent for ws = 9,11, and 13. These
three parameters are marked by black dotted circles in
Figure 4a. These correlation coefficients are statistically signif-
icant (confidence limit � 85%) and do not vary considerably
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with the choice of moving average window ws. Based on this
preliminary information we decided to use the [Td]n�3, [Ta]n,
and [Td]n+2 in the prediction model. A simple combination
of these three parameters that is [Td]n+2 � ([Ta]n + [Td]n�3)
is used and its correlation with [E]n is computed for n = 10–
21. It is found that this particular combination yields the cor-
relation coefficients of 0.95, 0.93, and 0.90 for ws = 9, 11,
and 13 respectively. However, we realize that the high value
of the formal correlation coefficient (�0.9) is not sufficient
to justify the uniqueness of this particular combination. Thus
we developed a following test model to check the robustness
of this particular combination.

We utilize the ascent and descent times of SCs n � 3 to
n + 2 in the test model. Therefore, apart from the entropy
[E]n, we have 12 other variables, namely [Ta]j and [Td]j, where
j = n � 3 to n + 2. Hence, it is reasonable to assume that the
entropy of the nth SC is dependent on these 12 variables rep-
resented as Ta and Td of past, present, and future SCs. Thus, the
prediction problem is now reduced to the identification of the
optimal combination (from these 12 variables) that best corre-
lates with the entropy of the nth SC. We define the following
test parameter [Ttest]n based on these 12 variables:

½T test�n ¼
Xj¼nþ2

j¼n�3

�W � ½T d �j � W � ½T a�j: ð3Þ

where W represents the weight on each variable and has a
value of either 0 or 1 (i.e. W = [0 1]). The ± sign in the equa-
tion ensures that all possible combinations are considered.
Overall, 312 candidate combinations can qualify as the opti-
mal [Ttest]n combination. For all these combinations, we
computed the correlation coefficient between [Ttest]n and
[E]n, for SCs 10–23. Here, the results of the test model are

shown for ws = 9. It is found that only 6 out of the possible
531,441 combinations have correlation coefficients r greater
than 0.95. However, it is pertinent to note that the number of
variables (nvi) that contribute to these best correlated six
combinations Ci (i = 1–6) can vary. In Figure 4b, for
the six correlated combinations, the number of variables Ci

(i = 1–6) is plotted as a function of the correlation coefficient
(ri). It can be seen that all the combinations yield correlation
coefficients in the narrow range of 0.95–0.96. It can also be
seen that combination C1 is associated with contributions
from the least number of variables (three), while the remain-
ing combinations (C2 to C6) are associated with five or more
variables. In such situations, the simplest of the models is
preferred. In the present case, as C1 can be modeled using
only three variables as opposed to five or more variables
for the other combinations, it qualifies as the simplest com-
bination to derive the entropy of the nth SC and is given as
follows:

T test;C1 ¼ ½T d �nþ2 � ð½T d �n�3 þ T a�n
� �

: ð4Þ

The above test model reveals that the initially formulated
simple combination, which is based on only the correlation
coefficient, turns out to be the simplest combination with the
least number of parameters and passes the test for the best pre-
diction equation.

We performed an additional test to confirm that the above
best argued combination has not emerged by chance. We gen-
erated a number of artificial random series of the same length
as that of the original SC time series. Treating these artificial
data as real data (DS), we carried out the same analysis
described by Eqs. (2)–(5). This exercise was carried out using
eight different artificially generated random series. It was
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found that none of the combinations obtained using the artifi-
cially generated random series produced a correlation coeffi-
cient of 0.9 or above when the number of parameters was
less than or equal to three, which is argued as optimal in
Figure 4b. It is pertinent to note that the results obtained from
the artificial time series lay clearly away from the region of
optimality. The additional test therefore reduces to below 1/9
the probability that the above argued best combination for
the SC time series has emerged by chance.

It is found that the entropy of the nth SC can be determined
efficiently using three parameters, namely the descent time of
the (n � 3)th SC, the ascent time of the nth SC and the descent
time of the (n + 2)th SC. The contribution of the preceding,
present and future SCs to the entropy of the present SC is
illustrated in Figure 5a. It is interesting to note that the vari-
ables contributing to the entropy of the nth SC are separated
by 22 years, a period close to the Hale magnetic SC. In the
new parameter [Tpre]n, we therefore combine information on
the past ([Td]n�3) and present ([Ta]n) for each nth SC as
follows:

½T pre�n ¼ ½T d �n�3 þ ½T a�n: ð5Þ

The values of Tpre are presented in Table 1 and nearly fall
in the range of 8–13 years. Therefore, we use [E]n, [Tpre]n, and
[Td]n+2 in the prediction model.

4. Results and discussion

We find that the parameter [Tpre]n estimated for each nth SC
and the Shannon entropy [E]n can be used to determine the
descent time of the (n + 2)th SC. Figure 5b shows the param-
eter [Td]n+2 � [Tpre]n as a function of En for the n range 10–21.
On the basis of Eq. (5), the ordinate can be viewed as a mod-
ified ascent time of the nth SC. It is evident from Figure 5b that

these two parameters correlate well, yielding a high correlation
coefficient of r = 0.95. The obtained correlation coefficient has
a confidence limit of more than 99%, and thus, these parame-
ters can be effectively used in the prediction of the descent
time of forthcoming SCs. The following equation shows a
strong linear relationship obtained from the least squares fit
of the parameters discussed above.

½T d �nþ2 � ½T pre�n ¼ 8:1946� ½En� � 48:6: ð6Þ

As an illustration, results related to SCs 24 and 25 are pre-
sented. Data of SCs 22 and 23 such as [Tpre]22 = 9.4168,
[Tpre]23 = 11.25, [E]22 = 5.6159, and E23 = 5.2617 enable us
to predict the descent times for SCs 24 and 25 as
[Td]24 = 6.84 ± 0.09 years and [Td]25 = 5.77 ± 0.21 years,
respectively. These predictions are presented in Table 1. The
standard errors of the slope and intercept in the prediction
equation are utilized to calculate the error in the prediction
of the descent times for SCs 24 and 25. As an exercise, we
computed the value of Td for SCs 10–21 using Eq. (6). The
absolute difference between the predicted and the observed
values of the descent time for each SC (i.e. 1T d

) is presented
in the last column of Table 1. The standard error in the
observed and predicted values of the descent time for SCs
12–23 is found to be 0.4 years, indicating that the proposed
model can be used to predict the descent times of future SCs
with better accuracy.

In the present model, the descent time of the forthcoming
SC (i.e. n + 2) is determined from parameters derived from
previous (i.e. n � 3 and n) SCs, suggesting that SCs have
long-term memory (nearly extending to the preceding five
SCs). It is often debated whether the solar dynamo possesses
long-term or short-term memory or both. Long-term (>1000
years) solar activity proxy data indicate that the occurrences
of grand minima and maxima are not uncommon (Usoskin
et al. 2007, 2012). It should be noted that the short-term (intra-
cycle) memory may be insufficient to maintain grand minima/
maxima. A recent study (Petrovay 2010 & references therein)
indicates the presence of long-term memory in SCs apart from
short-term memory. Furthermore, persistence analysis yields a
Hurst exponent greater than 0.7, which is sufficiently signifi-
cant to conclude that the solar dynamo indeed has long-term
memory (Ruzmaikin et al. 1994; Oliver & Ballester 1996;
Kilcik et al. 2009).

For any statistical forecasting model, a large number of
observations are necessary to get reliable predictions. For solar
activity studies, long-term sunspot number data are readily
available, and hence, the scientific community has extensively
used it. The use of physical parameters like F10.7 flux and
solar magnetic field in statistical based models should be
encouraged. However, both solar flux and solar magnetic field
observations are available only for the past few SCs. Their use
leads to less reliable predictions because of restriction of fewer
observations. Nevertheless, we have computed the Shannon
entropy using F10.7 flux and solar magnetic field observations,
which are available for the previous five and two SCs, respec-
tively. Such an exercise is important to understand the devia-
tion in the entropy estimated from sunspot number as
compared to that in the entropy obtained using F10.7 flux
and solar magnetic field. These estimates of the entropy are
shown in Figure 6, and it is clear that the entropy determined
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from physical parameters such as the F10.7 flux and solar mag-
netic field shows variations similar to those in the entropy
obtained from the sunspot number. Thus, it is evident that
the Shannon entropy, a measure of randomness inherent in
the SC, is reflected well by the various proxies of the solar
activity (viz. sunspot number, solar magnetic field, F10.7 flux).
The model proposed in the present study is robust and can be
used to predict the descent time of future SCs.

5. Possible clues to the occurrence of a grand
minimum

It is important to note that Eq. (6) can also be used to get esti-
mates of the entropy for earlier SCs (n in the range 4–9) since
[Tpre]n and [Td]n+2 are available. Figure 6 shows the entropy
values for SCs 4–23. The entropy values for SCs 4–9 are
obtained from Eq. (6) and are shown as red dots, whereas those
estimated from the daily sunspot number for SCs 10–23 are
depicted as black dots. Figure 6 reveals that the period of
Dalton minimum is associated with the lowest entropy values.
This interesting observation has the potential to identify the
occurrence of extended low solar activity periods. The predic-
tion equation obtained from the present model is discussed
in detail in this context. Eq. (6) can be recast as
Term1 = Term2 � Term3, where Term1 = [Td]n+2, Term2 =
8.1946 · [E]n, and Term3 = 48.6 � [Tpre]n. It may be noted
that Term2 and Term3 are always positive since [E]n > 0 and
[Tpre]n << 48.6. Thus, Term1 (i.e. the descent time [Td]n+2) is
positive and has a physical meaning. However, Term1 (i.e.
[Td]n+2) can become negative when the entropy of the system
decreases to an extent that renders Term3 � Term2. Under
these conditions, the system becomes mathematically untena-
ble. Such periods may be associated with prolonged solar
minima/grand minima.

6. Conclusions

Here, we propose a model exclusively for the prediction of the
descent time of SCs. For SCs 10–23, this model involves the
use of daily international sunspot number data. We estimate
the Shannon entropy for each nth SC and utilize the estimated
entropy values to predict the descent time of the (n + 2)th SC.
Equation (6) is a vital output of the present prediction model.
The parameter Tpre that appears on the left-hand side of the
equation is derived using the descent and ascent times of the
(n � 3)th and nth SCs, respectively. The average Tpre is
11 ± 2 years, which is almost half of the Hale magnetic SC
of 22 years (Hale et al. 1919). The time constant on the
right-hand side of Eq. (6) (i.e. 48.6 years) is close to half of
the Gleissberg cycle period of 80–90 years (Gleissberg 1939;
Peristykh & Damon 2003). Our model forecasts the length
of SCs 24 and 25 as 6.84 ± 0.09 and 5.77 ± 0.21 years, respec-
tively, which are within the range of descent times of earlier
SCs. The predicted descent time for SC 24 ([Td]24 = 6.84
years) suggests that this SC will cease close to February
2021. This is in agreement with recent predictions for SC
24, which are available on http://solarscience.msfc.nasa.gov/
predict.shtml. An interesting feature revealed by the present
model is the coincidence of the lowest values of the entropy
with the period of Dalton minimum. Our model suggests that
when the entropy of the nth SC falls below the critical value of
~{48.6 � [Tpre]n}/8.1946, the (n + 2)th SC may enter an
extended low solar activity period or a grand minimum. If
we assume the average estimate of [Tpre] as 11, then the critical
value of the entropy [E]c turns out to be 4.59. Mörner (2013)
proposed that the sun may enter an extended minimum during
the period 2030–2050. However, the descent times forecast for
SCs 24 and 25 by the present model suggest that such extended
solar minimum periods are not likely during SCs 24 and 25.
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