Solar variability, solar forcing, and coupling mechanisms in the terrestrial atmosphere
Open Access
J. Space Weather Space Clim.
Volume 5, 2015
Solar variability, solar forcing, and coupling mechanisms in the terrestrial atmosphere
Article Number A15
Number of page(s) 15
Published online 19 June 2015
  • Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, and J.W. Harder. Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model. Astron. Astrophys., 530, A71, 2011, DOI: 10.1051/0004-6361/201016189. [NASA ADS] [CrossRef] [EDP Sciences]
  • Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, T. Wenzler, D.J. Mortlock, and A.H. Jaffe. Reconstruction of total solar irradiance 1974–2009. Astron. Astrophys., 541, A27, 2012, DOI: 10.1051/0004-6361/201118702. [NASA ADS] [CrossRef] [EDP Sciences]
  • Brueckner, G.E., K.L. Edlow, L.E. Floyd, J.L. Lean, and M.E. Vanhoosier. The solar ultraviolet spectral irradiance monitor (SUSIM) experiment on board the Upper Atmosphere Research Satellite (UARS). J. Geophys. Res., 98, 10695, 1993, DOI: 10.1029/93JD00410. [NASA ADS] [CrossRef]
  • Chapman, G.A., A.M. Cookson, and J.J. Dobias. Solar variability and the relation of facular to sunspot areas during solar cycle 22. Astrophys. J., 482, 541–545, 1997, DOI: 10.1086/304138. [NASA ADS] [CrossRef]
  • Colak, T., and R. Qahwaji. Automated McIntosh-based classification of sunspot groups using MDI images, Sol. Phys., 248, 277–296, 2008, DOI: 10.1007/s11207-007-9094-3. [NASA ADS] [CrossRef]
  • Colak, T., and R. Qahwaji. Automated Solar Activity Prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather, 7, S06001, 2009, DOI: 10.1029/2008SW000401. [NASA ADS] [CrossRef]
  • Coulter, R.L., J.R. Kuhn, and H. Lin. The Precision Solar Photometric Telescopes. Bulletin of the American Astronomical Society, 28, 912, 1996.
  • Domingo, V., I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, et al. Solar surface magnetism and irradiance on time scales from days to the 11-Year cycle. Space Sci. Rev., 145, 337–380, 2009, DOI: 10.1007/s11214-009-9562-1. [NASA ADS] [CrossRef]
  • Dudok de Wit, T., S. Bruinsma, and K. Shibasaki. Synoptic radio observations as proxies for upper atmosphere modelling. J. Space Weather Space Clim., 4 (27), A06, 2014, DOI: 10.1051/swsc/2014003. [CrossRef] [EDP Sciences]
  • Ermolli, I., S. Criscuoli, H. Uitenbroek, F. Giorgi, M.P. Rast, and S.K. Solanki. Radiative emission of solar features in the Ca II K line: comparison of measurements and models. Astron. Astrophys., 523, A55, 2010, DOI: 10.1051/0004-6361/201014762. [NASA ADS] [CrossRef] [EDP Sciences]
  • Ermolli, I., S. Criscuoli, and F. Giorgi. Recent results from optical synoptic observations of the solar atmosphere with ground-based instruments. Contributions of the Astronomical Observatory Skalnate Pleso, 41, 73–84, 2011.
  • Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys., 13, 3945–3977, 2013, DOI: 10.5194/acp-13-3945-2013. [NASA ADS] [CrossRef]
  • Fehlmann, A., G. Kopp, W. Schmutz, R. Winkler, W. Finsterle, and N. Fox. Fourth world radiometric reference to SI radiometric scale comparison and implications for on-orbit measurements of the total solar irradiance. Metrologia, 49, 34, 2012, DOI: 10.1088/0026-1394/49/2/S34. [NASA ADS] [CrossRef]
  • Fontenla, J.M., W. Curdt, M. Haberreiter, J. Harder, and H. Tian. Semiempirical models of the solar atmosphere. III. Set of non-LTE models for far-ultraviolet/extreme-ultraviolet irradiance computation. Astrophys. J., 707, 482–502, 2009, DOI: 10.1088/0004-637X/707/1/482. [NASA ADS] [CrossRef]
  • Fontenla, J.M., J. Harder, W. Livingston, M. Snow, and T. Woods. High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res. [Atmos.], 116, D20108, 2011, DOI: 10.1029/2011JD016032. [NASA ADS] [CrossRef]
  • Fröhlich, C., B.N. Andersen, T. Appourchaux, G. Berthomieu, D.A. Crommelynck, et al. First results from VIRGO, the experiment for Helioseismology and Solar Irradiance Monitoring on SOHO, Sol. Phys., 170, 1–25, 1997, DOI: 10.1023/A:1004969622753. [NASA ADS] [CrossRef]
  • Haberreiter, M. Solar EUV spectrum calculated for quiet sun conditions. Sol. Phys., 274, 473–479, 2011, DOI: 10.1007/s11207-011-9767-9. [NASA ADS] [CrossRef]
  • Haberreiter, M. Towards the reconstruction of the EUV irradiance for solar cycle 23. In: C.H. Mandrini and D.F. Webb, Editors, IAU Symposium, vol. 286, 97–100, 2012, DOI: 10.1017/S174392131200470X.
  • Haberreiter, M., N.A. Krivova, W. Schmutz, and T. Wenzler. Reconstruction of the solar UV irradiance back to 1974. Adv. Space Res., 35, 365–369, 2005, DOI: 10.1016/j.asr.2005.04.039. [NASA ADS] [CrossRef]
  • Haberreiter, M., W. Schmutz, and A.G. Kosovichev. Solving the discrepancy between the seismic and photospheric solar radius. Astrophys. J., 675, L53–L56, 2008, DOI: 10.1086/529492. [NASA ADS] [CrossRef]
  • Haberreiter, M., V. Delouille, B. Mampaey, C. Verbeeck, G. Del Zanna, and S. Wieman. Reconstruction of the solar EUV irradiance from 1996 to 2010 based on SOHO/EIT images. J. Space Weather Space Clim., 4 (27), A30, 2014, DOI: 10.1051/swsc/2014027. [CrossRef] [EDP Sciences]
  • Harvey, K.L., and O.R. White. Magnetic and radiative variability of solar surface structures. I. Image decomposition and magnetic-intensity mapping. Astrophys. J., 515, 812–831, 1999, DOI: 10.1086/307035. [NASA ADS] [CrossRef]
  • Hochedez, J., W. Schmutz, Y. Stockman, U. Schühle, A. Benmoussa, et al. LYRA, a solar UV radiometer on Proba2, Adv. Space Res., 37, 303–312, 2006, DOI: 10.1016/j.asr.2005.10.041. [NASA ADS] [CrossRef]
  • Jones, H.P., T.L. Duvall Jr., J.W. Harvey, C.T. Mahaffey, J.D. Schwitters, and J.E. Simmons. The NASA/NSO spectromagnetograph. Sol. Phys., 139, 211–232, 1992, DOI: 10.1007/BF00159149. [NASA ADS] [CrossRef]
  • Kopp, G., A. Fehlmann, W. Finsterle, D. Harber, K. Heuerman, and R. Willson. Total solar irradiance data record accuracy and consistency improvements. Metrologia, 49, 29, 2012, DOI: 10.1088/0026-1394/49/2/S29. [NASA ADS] [CrossRef]
  • Krivova, N.A., S.K. Solanki, M. Fligge, and Y.C. Unruh. Reconstruction of solar irradiance variations in cycle 23: Is solar surface magnetism the cause? Astron. Astrophys., 399, L1–L4, 2003, DOI: 10.1051/0004-6361:20030029. [NASA ADS] [CrossRef] [EDP Sciences]
  • Kurucz, R.L. New Opacity Calculations. In: NATO ASIC Proc. 341: Stellar Atmospheres – Beyond Classical Models, 441, 1991. [CrossRef]
  • Lean, J.L., J. Cook, W. Marquette, and A. Johannesson. Magnetic sources of the solar irradiance cycle. Astrophys. J., 492, 390–401, 1998, DOI: 10.1086/305015. [NASA ADS] [CrossRef]
  • Lean, J.L., T.N. Woods, F.G. Eparvier, R.R. Meier, D.J. Strickland, J.T. Correira, and J.S. Evans. Solar extreme ultraviolet irradiance: present, past, and future. J. Geophys. Res. [Space Phys.], 116, A01102, 2011, DOI: 10.1029/2010JA015901. [CrossRef]
  • Liu, Y., J.T. Hoeksema, P.H. Scherrer, J. Schou, S. Couvidat, et al. Comparison of line-of-sight magnetograms taken by the solar dynamics observatory/helioseismic and magnetic imager and solar and heliospheric observatory/Michelson doppler imager, Sol. Phys., 279 (1), 295–316, 2012, DOI: 10.1007/s11207-012-9976-x. [NASA ADS] [CrossRef]
  • Morrill, J.S., L. Floyd, and D. McMullin. The solar ultraviolet spectrum estimated using the Mg ii index and Ca II K disk activity. Sol. Phys., 269, 253–267, 2011, DOI: 10.1007/s11207-011-9708-7. [NASA ADS] [CrossRef]
  • Ortiz, A., S.K. Solanki, V. Domingo, M. Fligge, and B. Sanahuja. On the intensity contrast of solar photo spheric faculae and network elements. Astron. Astrophys., 388, 1036–1047, 2002, DOI: 10.1051/0004-6361:20020500. [NASA ADS] [CrossRef] [EDP Sciences]
  • Preminger, D.G., G.A. Chapman, and A.M. Cookson. Activity-brightness Correlations for the Sun and Sun-like Stars. ApJ, 739, L45, 2011, DOI: 10.1088/2041-8205/739/2/L45. [NASA ADS] [CrossRef]
  • Scherrer, P.H., R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, et al.. The solar oscillations investigation – Michelson doppler imager. Sol. Phys., 162, 129–188, 1995, DOI: 10.1007/BF00733429. [NASA ADS] [CrossRef] [MathSciNet]
  • Schmutz, W., A. Fehlmann, G. Hülsen, P. Meindl, R. Winkler, et al. The PREMOS/PICARD instrument calibration. Metrologia, 46, 202, 2009. DOI: 10.1088/0026-1394/46/4/S13. [NASA ADS] [CrossRef]
  • Schmutz, W., A. Fehlmann, W. Finsterle, G. Kopp, and G. Thuillier. Total solar irradiance measurements with PREMOS/PICARD. In American Institute of Physics Conference Series, vol. 1531 of American Institute of Physics Conference Series, 624–627, 2013, DOI: 10.1063/1.4804847.
  • Schou, J., P.H. Scherrer, R.I. Bush, R. Wachter, S. Couvidat, et al. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol. Phys., 275, 229–259, 2012, DOI: 10.1007/s11207-011-9842-2. [NASA ADS] [CrossRef]
  • Shapiro, A.I., W. Schmutz, M. Schoell, M. Haberreiter, and E. Rozanov. NLTE solar irradiance modeling with the COSI code. Astron. Astrophys., 517, A48, 2010, DOI: 10.1051/0004-6361/200913987. [NASA ADS] [CrossRef] [EDP Sciences]
  • Shapiro, A.I., W. Schmutz, E. Rozanov, M. Schoell, M. Haberreiter, A.V. Shapiro, and S. Nyeki. A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron. Astrophys., 529, A67, 2011, DOI: 10.1051/0004-6361/201016173. [NASA ADS] [CrossRef] [EDP Sciences]
  • Solanki, S.K., N.A. Krivova, and J.D. Haigh. Solar irradiance variability and climate. Annu. Rev. Astro. Astrophys., 51, 311–351, 2013, DOI: 10.1146/annurev-astro-082812-141007. [NASA ADS] [CrossRef]
  • Tang, F. Rotation rate of high-latitude sunspots. Sol. Phys., 69, 399–404, 1981, DOI: 10.1007/BF00150003. [CrossRef]
  • Thuillier, G., M. Deland, A. Shapiro, W. Schmutz, D. Bolsée, and S.M.L. Melo. The solar spectral irradiance as a function of the Mg II index for atmosphere and climate modelling, Sol. Phys., 277, 245–266, 2012, DOI: 10.1007/s11207-011-9912-5. [NASA ADS] [CrossRef]
  • Uitenbroek, H. The Effect of coherent scattering on radiative losses in the solar Ca II K line. Astrophys. J., 565, 1312–1322, 2002, DOI: 10.1086/324698. [NASA ADS] [CrossRef]
  • Unruh, Y.C., N.A. Krivova, S.K. Solanki, J.W. Harder, and G. Kopp. Spectral irradiance variations: comparison between observations and the SATIRE model on solar rotation time scales. Astron. Astrophys., 486, 311–323, 2008, DOI: 10.1051/0004-6361:20078421. [NASA ADS] [CrossRef] [EDP Sciences]
  • Verbeeck, C., V. Delouille, B. Mampaey, and R. De Visscher. The SPoCA-suite: software for extraction, characterization, and tracking of active regions and coronal holes on EUV images. Astron. Astrophys., 561, A29, 2014, DOI: 10.1051/0004-6361/201321243. [NASA ADS] [CrossRef] [EDP Sciences]
  • Worden, J.R., O.R. White, and T.N. Woods. Evolution of chromospheric structures derived from Ca II K spectroheliograms: implications for solar ultraviolet irradiance variability, Astrophys. J., 496, 998–1014, 1998, DOI: 10.1086/305392. [NASA ADS] [CrossRef]
  • Worden, J.R., T.N. Woods, and K.W. Bowman. Far-ultraviolet intensities and center-to-limb variations of active regions and quiet Sun using UARS SOLSTICE irradiance measurements and ground-based spectroheliograms, Astrophys. J., 560, 1020–1034, 2001, DOI: 10.1086/323058. [NASA ADS] [CrossRef]
  • Yeo, K.L., S.K. Solanki, and N.A. Krivova. Intensity contrast of solar network and faculae. Astron. Astrophys., 550, A95, 2013, DOI: 10.1051/0004-6361/201220682. [NASA ADS] [CrossRef] [EDP Sciences]
  • Yeo, K.L., N.A. Krivova, and S.K. Solanki. Solar cycle variation in solar irradiance. Space Sci. Rev., 186, 137–167, 2014a, DOI: 10.1007/s11214-014-0061-7. [NASA ADS] [CrossRef]
  • Yeo, K.L., N.A. Krivova, S.K. Solanki, and K.H. Glassmeier. Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. Astron. Astrophys., 570, A85, 2014b, DOI: 10.1051/0004-6361/201423628. [NASA ADS] [CrossRef] [EDP Sciences]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.