Open Access
J. Space Weather Space Clim.
Volume 5, 2015
Article Number A29
Number of page(s) 9
Published online 26 August 2015
  • Bapanayya, C., P.A. Raju, S.D. Sharma, and D.S. Ramesh. Information theory-based measures of similarity for imaging shallow-mantle discontinuities. Lithosphere, 3, 289, 2011, DOI: 10.1130/L152.1. [CrossRef]
  • Brajsa, R., H. Wähl, A. Hanslmeier, G. Verbanac, D. Ruždjak, E. Cliver, L. Svalgaard, and M. Roth. On solar cycle predictions and reconstructions. A&A, 496, 855, 2009, DOI: 10.1051/0004-6361:200810862. [NASA ADS] [CrossRef] [EDP Sciences]
  • Carbone, A., G. Castelli, and H.E. stanley. Analysis of clusters formed by the moving average of a long-range correlated time series. Phys. Rev. E, 69, 026105, 2004, DOI: 10.1103/PhysRevE.69.026105. [CrossRef]
  • Choudhuri, A.R., and B. Karak. Origin of Grand minima in sunspot cycles. Phys. Rev. Lett., 109, 171103, 2012, DOI: 10.1103/PhysRevLett.109.171103. [NASA ADS] [CrossRef]
  • Das Sharma, S., D.S. Ramesh, C. Bapanayya, and P.A. Raju. Sea surface temperatures in cooler climate stages bear more similarity with atmospheric CO2 forcing. J. Geophys. Res. [Atmos.], 117, 13, 2012, DOI: 10.1029/2012JD017725. [CrossRef]
  • De Michelis, P., G. Consolini, M. Materassi, and R. Tozzi. An information theory approach to the storm-substorm relationship. J. Geophys. Res., 116, A08225, 2011, DOI: 10.1029/2011JA016535.
  • De Toma, G., S.E. Gibson, B.A. Emery, and C.N. Arge. The Minimum Between Cycle 23 and 24: Is sunspot number the whole story? ASP Conf. Ser., 428, 217, 2010.
  • Dikpati, M., and P. Charbonneau. A Babcock-Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J., 518, 508, 1999, DOI: 10.1086/307269. [NASA ADS] [CrossRef]
  • Dikpati, M., and P. Gilman. Global solar dynamo models: simulations and predictions. J. Astrophys. Astron., 29, 29, 2008, DOI: 10.1007/s12036-008-0004-3. [CrossRef]
  • Dikpati, M., G. De Toma, and P. Gilman. Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett., 33, L05102, 2006, DOI: 10.1029/2005GL025221. [CrossRef]
  • Echer, E., B.T. Tsurutani, and W.D. Gonzalez. Extremely low geomagnetic activity during the recent deep solar cycle minimum. Proceedings IAU Symposium 286, 2012, DOI: 10.1017/S174392131200484X.
  • Emmert, J.T., J.L. Lean, and J.M. Picone. Record-low thermospheric density during the 2008 solar minimum. Geophys. Res. Lett., 37, L12102, 2010, DOI: 10.1029/2010GL043671. [NASA ADS] [CrossRef]
  • Ermolli, I., K. Matthes, T. Dudokdewit, N.A. Krivova, K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. Discuss., 12, 24557, 2012, DOI: 10.5194/acpd-12-24557-2012. [NASA ADS] [CrossRef]
  • Feynman, J. Geomagnetic and solar wind cycles, 1900–1975. J. Geophys. Res., 87 (A8), 6153, 1982, DOI: 10.1029/JA087iA08p06153. [CrossRef]
  • Fröhlich, C. Total solar irradiance: what have we learned from the last three cycles and the recent minimum. Space Sci. Rev., 176, 237, 2013, DOI: 10.1007/s11214-011-9780-1. [NASA ADS] [CrossRef]
  • Gleissberg, W. A long periodic fluctuations of the Sun-spot numbers. The Observatory, 62, 158, 1939.
  • Hale, G.E., F. Ellerman, S.B. Nicholson, and A.H. Joy. The magnetic polarity of sun-spots. Astrophys. J., 49, 153, 1919, DOI: 10.1086/142452. [NASA ADS] [CrossRef]
  • Hathaway, D.H., and L. Upton. The solar meridional circulation and sunspot cycle variability. J. Geophys. Res., 119, 3316, 2014, DOI: 10.1002/2013JA019432. [CrossRef]
  • Hathaway, D.H., and R.M. Wilson. Geomagnetic activity indicates large amplitude for sunspot cycle 24. Geophys. Res. Lett., 33, L18101, 2006, DOI: 10.1029/2006GL027053. [CrossRef]
  • Hathaway, D.H., R.M. Wilson, and E.J. Reichmann. The shape of the sunspot cycle. Sol. Phys., 151, 177, 1994, DOI: 10.1007/BF00654090. [NASA ADS] [CrossRef]
  • Haigh, J.D., R. Winning, R. Toumi, and J.W. Harder. An influence of solar spectral variations on radiative forcing of climate. Nature, 467, 696, 2010, DOI: 10.1038/nature09426. [NASA ADS] [CrossRef] [PubMed]
  • Hajra, R., B.T. Tsurutani, E. Echer, and W.D. Gonzalez. Relativistic electron acceleration during high-intensity, long-duration, continuous AE activity (HILDCAA) events: solar cycle phase dependences. Geophys. Res. Lett., 41, 1876–1881, 2014, DOI: 10.1002/2014GL059383. [CrossRef]
  • Jager, C., and S. Duhau. Sudden transitions and grand variations in the solar dynamo past and future. J. Space Weather Space Clim., 2, A07, 2012, DOI: 10.1051/swsc/2012008. [CrossRef] [EDP Sciences]
  • Kakad, B. A new method for prediction of peak sunspot number and ascent time of the solar Cycle. Sol. Phys., 270, 393, 2011, DOI: 10.1007/s11207-011-9726-5. [CrossRef]
  • Kane, R.P. Prediction of the sunspot maximum of solar cycle 23 by extrapolation of spectral components. Sol. Phys., 189, 217, 1999, DOI: 10.1023/A:1005298313886. [CrossRef]
  • Kane, R.P. A preliminary estimate of the size of the coming solar cycle 24, based on Ohls precursor method. Sol. Phys., 243, 205, 2007, DOI: 10.1007/s11207-007-0475-4. [CrossRef]
  • Kilcik, A., C.N.K. Anderson, J.P. Rozelot, H. Ye, G. Sugihara, and A. Ozguc. Nonlinear prediction of solar cycle 24. Astrophys. J., 693, 11–73, 2009, DOI: 10.1088/0004-637X/693/2/1173. [NASA ADS] [CrossRef]
  • Knuth, K.H. Optimal data-based binning for histograms. ArXiv Physics e-prints, 2013, arXiv:physics/0605197v2.
  • Li, K.J., H.S. Yun, and X.M. Gu. On long-term predictions of the maximum sunspot numbers of solar cycles 21 to 23. A&A, 368, 285–285, 2001, DOI: 10.1051/0004-6361:20000547. [CrossRef] [EDP Sciences]
  • Materassi, M., A. Wernik, and E. Yodanova. Determining the verse of magnetic turbulent cascades in the Earths magnetospheric cusp via transfer entropy analysis: preliminary results. Nonlinear Process. Geophys., 14, 153, 2007, [CrossRef]
  • McComas, D.J., R.W. Ebert, H.A. Elliott, B.E. Goldstein, J.T. Gosling, N.A. Schwadron, and R.M. Skoug. Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett., 35, L18103, 2008, DOI: 10.1029/2008GL034896. [NASA ADS] [CrossRef]
  • Miyahara, H., K. Kitazawa, K. Nagaya, Y. Yokoyama, H. Matsuzaki, K. Masuda, T. Nakamura, and Y. Muraki. Is the sun heading for another Maunder minimum? Precursors of the Grand solar minima. J. Cosmol., 8, 19–70, 2010,
  • Mörner, N.A. Planetary beat and solar-terrestrial responses. Pattern Recognit. Phys., 1, 107, 2013, DOI: 10.5194/prp-1-107-2013. [CrossRef]
  • Ohl, A.I. Wolfs number prediction for the maximum of the cycle 20. Solnice. Dani., 12, 84, 1966.
  • Oliver, R., and J.L. Ballester. Rescaled range analysis of the asymmetry of solar activity. Sol. Phys., 169, 215, 1996, DOI: 10.1007/BF00153842. [CrossRef]
  • Peristykh, A.N., and P.E. Damon. Persistence of the Gleissberg 88-year solar cycle over the last 12,000 years: evidence from cosmogenic isotopes. J. Geophys. Res., 108 (A1), 1003, 2003, DOI: 10.1029/2002JA009390. [NASA ADS] [CrossRef]
  • Pesnell, W.D. Predictions of solar cycle 24. Sol. Phys., 252, 209, 2008, DOI: 10.1007/s11207-008-9252-2. [NASA ADS] [CrossRef]
  • Petrovay, K. Solar cycle prediction. Living Rev. Sol. Phys., 7, 2010, DOI: 10.12942/lrsp-2010-6.
  • Podladchikova, T., and R. Van der Linden. An upper limit prediction of the peak sunspot number for solar cycle 24. J. Space Weather Space Clim., 1, A01, 2011, DOI: 10.1051/swsc/2011110013. [CrossRef] [EDP Sciences]
  • Ruzmaikin, A., J. Feynman, and P. Robinson. Long-term persistence of solar activity. Sol. Phys., 149, 395–395, 1994, DOI: 10.1007/BF00690625. [CrossRef]
  • Schatten, K. Fair space weather for solar cycle 24. Geophys. Res. Lett., 32, L21106, 2005, DOI: 10.1029/2005GL024363. [NASA ADS] [CrossRef]
  • Scott, D.W. On optimal and data-based histograms. Biometrika, 66 (3), 605, 1979, DOI: 10.1093/biomet/66.3.605. [CrossRef] [MathSciNet]
  • Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J., 27, 379, 1948. [CrossRef] [MathSciNet]
  • Solanki, S.K., N.A. Krivova, M. Schüssler, and M. Fligge. Search for relationship between solar cycle amplitude and length. A&A, 396, 1029, 2002, DOI: 10.1051/0004-6361:20021436. [NASA ADS] [CrossRef] [EDP Sciences]
  • Solomon, S.C., L. Qian, and A.G. Burns. The anomalous ionosphere between solar cycles 23 and 24. J. Geophys. Res., 118, 6524, 2013, DOI: 10.1002/jgra.50561. [CrossRef]
  • Svalgaard, L., E.W. Cliver, and Y. Kamide. Sunspot cycle 24: smallest cycle in 100 years. Geophys. Res. Lett., 32, L01104, 2005, DOI: 10.1029/2004GL021664. [NASA ADS] [CrossRef]
  • Thompson, R.J. A technique for predicting the amplitude of the solar cycle. Sol. Phys., 148, 383, 1993, DOI: 10.1007/BF00645097. [CrossRef]
  • Usoskin, I.G., S.K. Solanki, and G.A. Kovaltsov. Grand minima and maxima of solar activity: new observational constraints. A&A, 471, 301, 2007, DOI: 10.1051/0004-6361:20077704. [NASA ADS] [CrossRef] [EDP Sciences]
  • Usoskin, I.G., S.K. Solanki, and G.A. Kovaltsov. Grand minima of solar activity during the last millennia. Proceedings IAU Symposium, 7, 372, 2012, DOI: 10.1017/S174392131200511X. [CrossRef]
  • Wallis, K.F. A note on the calculation of entropy from histograms. Department of Economics, University of Warwick, UK, Tech. Rep, 2006.
  • Wilson, R.M. On the level of skill in predicting maximum sunspot number: a comparative study of single variate and bivariate precursor techniques. Sol. Phys., 125, 143, 1990, DOI: 10.1007/BF00154784. [CrossRef]
  • Wilson, R.M., D.H. Hathaway, and E.J. Reichmann. An estimate for the size of cycle 23 based on near minimum conditions. J. Geophys. Res., 103 (A4), 6595, 1998 [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.