Statistical Challenges in Solar Information Processing
Open Access
J. Space Weather Space Clim.
Volume 5, 2015
Statistical Challenges in Solar Information Processing
Article Number A34
Number of page(s) 12
Published online 27 October 2015
  • Aschwanden, M.J. Image processing techniques and feature recognition in solar physics. Sol. Phys., 262, 235–275, 2010, DOI: 10.1007/s11207-009-9474-y. [NASA ADS] [CrossRef]
  • Barra, V., V. Delouille, and J. Hochedez. Segmentation of extreme ultraviolet solar images using a multispectral data fusion process, in IEEE International Conference on Fuzzy Systems, 1–6, 2007, DOI: 10.1109/FUZZY.2007.4295367.
  • Barra, V., V. Delouille, M. Kretzschmar, and J.F. Hochedez. Fast and robust segmentation of solar EUV images: algorithm and results for solar cycle 23. A&A, 505, 361–371, 2009, DOI: 10.1051/0004-6361/200811416. [NASA ADS] [CrossRef] [EDP Sciences]
  • Benkhalil, A., V. Zharkova, S. Zharkov, and S. Ipson. Automatic identification of active regions (Plages) in the full-disk solar images using local thresholding and region growing techniques, in Proceedings of the AISB'03 Symposium, Aberystwyth, 11 April 2003, 66–73, 2003.
  • Benkhalil, A., V.V. Zharkova, S. Zharkov, and S. Ipson. Active region detection and verification with the solar feature catalogue. Sol. Phys., 235, 87–106, 2006, DOI: 10.1007/s11207-006-0023-7. [NASA ADS] [CrossRef]
  • Bloch, I. Information combination operators for data fusion: a comparative review with classification. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 26 (1), 52–67, 1996, DOI: 10.1109/3468.477860. [CrossRef]
  • Caballero, C., and M.C. Aranda. A comparative study of clustering methods for active region detection in solar EUV images. Sol. Phys., 283, 691–717, 2013, DOI: 10.1007/s11207-013-0239-2. [CrossRef]
  • Colak, T., and R. Qahwaji. Automated McIntosh-based classification of sunspot groups using MDI images. Sol. Phys., 248, 277–296, 2008, DOI: 10.1007/s11207-007-9094-3. [NASA ADS] [CrossRef]
  • Colak, T., and R. Qahwaji. Prediction of EVE/ESP irradiance from SDO/AIA images using Fuzzy image processing and machine learning. Sol. Phys., 283, 143–156, 2013, DOI: 10.1007/s11207-011-9880-9. [NASA ADS] [CrossRef]
  • Curto, J.J., M. Blanca, and E. Martínez. Automatic sunspots detection on full-disk solar images using mathematical morphology. Sol. Phys., 250, 411–429, 2008, DOI: 10.1007/s11207-008-9224-6. [NASA ADS] [CrossRef]
  • de Toma, G. Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24. Sol. Phys., 274, 195–217, 2011, DOI: 10.1007/s11207-010-9677-2. [NASA ADS] [CrossRef]
  • Dempster, A.P., N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc.: Ser. B, 39, 1–38, 1977.
  • Dudok de Wit, T. Fast segmentation of solar extreme ultraviolet images. Sol. Phys., 239, 519–530, 2006. [NASA ADS] [CrossRef]
  • Haberreiter, M., V. Delouille, B. Mampaey, C. Verbeeck, G. Del Zanna, and S. Wieman. Reconstruction of the solar EUV irradiance from 1996 to 2010 based on SOHO/EIT images. J. Space Weather Space Clim., 4 (27), A30, 2014, DOI: 10.1051/swsc/2014027. [CrossRef] [EDP Sciences]
  • Harvey, K.L., and O.R. White. Magnetic and radiative variability of solar surface structures. I. Image decomposition and magnetic-intensity mapping. Astrophys. J., 515, 812–831, 1999, DOI: 10.1086/307035. [NASA ADS] [CrossRef]
  • Higgins, P.A., P.T. Gallagher, R.T.J. McAteer, and D.S. Bloomfield. Solar magnetic feature detection and tracking for space weather monitoring. Adv. Space Res., 47, 2105–2117, 2011, DOI: 10.1016/j.asr.2010.06.024. [NASA ADS] [CrossRef]
  • Hurlburt, N., M. Cheung, C. Schrijver, L. Chang, S. Freeland, et al. Heliophysics event knowledgebase for the Solar Dynamics Observatory (SDO) and beyond. Sol. Phys., 275 (1–2), 67–78, 2012, DOI: 10.1007/s11207-010-9624-2. [NASA ADS] [CrossRef]
  • Kraaikamp, E., and C. Verbeeck. Solar Demon – an approach to detecting flares, dimmings, and EUV waves on SDO/AIA images. J. Space Weather Space Clim., 5, A18, 2015, DOI: 10.1051/swsc/2015019. [CrossRef] [EDP Sciences]
  • Krieger, A.S., A.F. Timothy, and E.C. Roelof. A coronal hole and its identification as the source of a high velocity solar wind stream. Sol. Phys., 29, 505–525, 1973, DOI: 10.1007/BF00150828. [NASA ADS] [CrossRef]
  • Krista, L.D., and P.T. Gallagher. Automated coronal hole detection using local intensity thresholding techniques. Sol. Phys., 256, 87–100, 2009, DOI: 10.1007/s11207-009-9357-2. [NASA ADS] [CrossRef]
  • Kullback, S. Information theory and statistics, New York: John Wiley, 1959.
  • Lemen, J.R., A.M. Title, D.J. Akin, P.F. Boerner, and the AIA team. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys., 275, 17–40, 2012, DOI: 10.1007/s11207-011-9776-8. [NASA ADS] [CrossRef]
  • Lowder, C., J. Qiu, R. Leamon, and Y. Liu. Measurements of EUV coronal holes and open magnetic flux. Astrophys. J., 783 (2), 142, 2014, DOI: 10.1088/0004-637X/783/2/142. [CrossRef]
  • Martens, P.C.H., G.D.R. Attrill, A.R. Davey, A. Engell, S. Farid, et al. Computer vision for the Solar Dynamics Observatory (SDO). Sol. Phys., 275, 79–113, 2012, DOI: 10.1007/s11207-010-9697-y. [NASA ADS] [CrossRef]
  • McAteer, R.T.J., P.T. Gallagher, J. Ireland, and C.A. Young. Automated boundary-extraction and region-growing techniques applied to solar magnetograms. Sol. Phys., 228, 55–66, 2005, DOI: 10.1007/s11207-005-4075-x. [NASA ADS] [CrossRef]
  • Pettauer, T., and P. Brandt. On novel methods to determine areas of sunspots from photoheliograms. Sol. Phys., 175, 197–203, 1997. [NASA ADS] [CrossRef]
  • Preminger, D., S. Walton, and G. Chapman. Solar feature identification using contrasts and contiguity. Sol. Phys., 171, 303–330, 1997. [NASA ADS] [CrossRef]
  • Reiss, M., M. Temmer, R. Rotter, S. Hofmeister, and A. Veronig. Identification of coronal holes and lament channels in SDO/AIA 193A images via geometrical classification methods. Cent. Eur. Astrophys. Bull., 1, 95–104, 2014.
  • Reiss, M.A., S.J. Hofmeister, R. De Visscher, M. Temmer, A.M. Veronig, V. Delouille, B. Mampaey, and H. Ahammer. Improvements on coronal hole detection in SDO/AIA images using supervised classification. Journal of Space Weather and Space Climate, 5, A23, 2015, DOI: 10.1051/swsc/2015025. [CrossRef]
  • Richards, J. Remote sensing digital image analysis, Springer-Verlag, Berlin, ISBN: 0471056693, 1999. [CrossRef]
  • Rigler, E.J., S.M. Hill, A.A. Reinard, and R.A. Steenburgh. Solar thematic maps for space weather operations. Space Weather, 10, S08009, 2012, DOI: 10.1029/2012SW000780. [CrossRef]
  • Scholl, I.F., and S.R. Habbal. Automatic detection and classification of coronal holes and filaments based on EUV and magnetogram observations of the solar disk. Sol. Phys., 248, 425–439, 2008, DOI: 10.1007/s11207-007-9075-6. [CrossRef]
  • Scott, D.W. Multivariate density estimation: theory, practice, and visualization (Wiley Series in probability and statistics), 2 edn. Wiley, ISBN: 978-0-471-69755-8, 2015.
  • Seaton, D.B., A. De Groof, P. Shearer, D. Berghmans, and B. Nicula. SWAP observations of the long-term, large-scale evolution of the extreme-ultraviolet solar corona. Astrophys. J., 777, 72, 2013, DOI: 10.1088/0004-637X/777/1/72. [CrossRef]
  • Steinegger, M., J. Bonet, M. Vazquez, and A. Jimenez. On the intensity thresholds of the network and plage regions. Sol. Phys., 177, 279–286, 1998. [NASA ADS] [CrossRef]
  • Turmon, M., J.M. Pap, and S. Mukhtar. Statistical pattern recognition for labeling solar active regions: application to SOHO/MDI imagery. Astrophys. J., 568, 396–407, 2002, DOI: 10.1086/338681. [NASA ADS] [CrossRef]
  • Verbanac, G., B. Vršnak, S. Živković, T. Hojsak, A.M. Veronig, and M. Temmer. Solar wind high-speed streams and related geomagnetic activity in the declining phase of solar cycle 23. A&A, 533, A49, 2011, DOI: 10.1051/0004-6361/201116615. [NASA ADS] [CrossRef] [EDP Sciences]
  • Verbeeck, C., V. Delouille, B. Mampaey, and R. De Visscher. The SPoCA-suite: software for extraction, characterization, and tracking of active regions and coronal holes on EUV images. A&A, 561, A29, 2014, DOI: 10.1051/0004-6361/201321243. [NASA ADS] [CrossRef] [EDP Sciences]
  • Verbeeck, C., P.A. Higgins, T. Colak, F.T. Watson, V. Delouille, B. Mampaey, and R. Qahwaji. A multi-wavelength analysis of active regions and sunspots by comparison of automatic detection algorithms. Sol. Phys., 283, 67–95, 2013, DOI: 10.1007/s11207-011-9859-6. [NASA ADS] [CrossRef]
  • Watson, F., L. Fletcher, S. Dalla, and S. Marshall. Modelling the longitudinal asymmetry in sunspot emergence: the role of the Wilson depression. Sol. Phys., 260, 5–19, 2009, DOI: 10.1007/s11207-009-9420-z. [NASA ADS] [CrossRef]
  • Worden, J., T. Woods, W. Neupert, and J. Delaboudiniere. Evolution of chromospheric structures: how chromospheric structures contribute to the solar He II 30.4 nanometer irradiance and variability. Astrophys. J., 511, 965–975, 1999. [NASA ADS] [CrossRef]
  • Yeates, A.R., D.H. Mackay, and A.A. van Ballegooijen. Evolution and distribution of current helicity in full-sun simulations. Astrophys. J., 680, L165–L168, 2008, DOI: 10.1086/590057. [CrossRef]
  • Zhang, H., J.E. Fritts, and S.A. Goldman. Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Underst., 110 (2), 260–280, 2008, DOI: 10.1016/j.cviu.2007.08.003. [CrossRef]
  • Zharkov, S., V.V. Zharkova, and S.S. Ipson. Statistical properties of sunspots in 1996–2004: I. Detection, North South asymmetry and area distribution. Sol. Phys., 228, 377–397, 2005, DOI: 10.1007/s11207-005-5005-7. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.