Statistical Challenges in Solar Information Processing
Open Access
J. Space Weather Space Clim.
Volume 6, 2016
Statistical Challenges in Solar Information Processing
Article Number A1
Number of page(s) 20
Published online 11 January 2016
  • Almeida, M., and L. Almeida. Blind and semi-blind deblurring of natural images. IEEE Trans. Image Process., 19 (1), 36–52, 2010, DOI: 10.1109/TIP.2009.2031231. [CrossRef]
  • Almeida, M., and M. Figueiredo. Deconvolving images with unknown boundaries using the alternating direction method of multipliers. IEEE Trans. Image Process., 22 (8), 3074–3086, 2013a, DOI: 10.1109/TIP.2013.2258354. [CrossRef]
  • Almeida, M., and M. Figueiredo. Parameter estimation for blind and non-blind deblurring using residual whiteness measures. IEEE Trans. Image Process., 22 (7), 2751–2763, 2013b, DOI: 10.1109/TIP.2013.2257810. [CrossRef]
  • Anconelli, B., M. Bertero, P. Boccacci, M. Carbillet, and H. Lanteri. Reduction of boundary effects in multiple image deconvolution with an application to LBT LINC-NIRVANA. A&A, 448 (3), 1217–1224, 2006, DOI: 10.1051/0004-6361:20053848. [NASA ADS] [CrossRef] [EDP Sciences]
  • Anscombe, F.J. The transformation of Poisson, binomial and negative-binomial data. Biometrika, 35 (3–4), 246–254, 1948, DOI: 10.1093/biomet/35.3-4.246. [CrossRef]
  • Anthoine, S., J.-F. Aujol, Y. Boursier, and C. Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Prob. Imaging, 6 (4), 565–598, 2012, DOI: 10.3934/ipi.2012.6.565. [CrossRef]
  • Attouch, H., J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res., 35 (2), 438–457, 2010, DOI: 10.1287/moor.1100.0449. [CrossRef] [MathSciNet]
  • Ayers, G.R., and J.C. Dainty. Iterative blind deconvolution method and its applications. Opt. Lett., 3 (7), 547–549, 1988, DOI: 10.1364/OL.13.000547. [NASA ADS] [CrossRef] [PubMed]
  • Babacan, S., R. Molina, and A. Katsaggelos. Variational Bayesian blind deconvolution using a total variation prior. IEEE Trans. Image Process., 18 (1), 12–26, 2009, DOI: 10.1109/TIP.2008.2007354. [CrossRef]
  • Beck, A., and M. Teboulle. Gradient-based algorithms with applications to signal recovery problems. In: D., Palomar, and Y. Eldar, Editors. Convex Optimization in Signal Processing and Communications, Cambridge University Press, 42–88, 2010.
  • Berg, E.V., M.P. Friedlander, G. Hennenfent, F. Herrmann, R. Saab, and Ö. Yılmaz. Sparco: A testing framework for sparse reconstruction, Tech. Rep. TR-2007-20, Dept. Computer Science, University of British Columbia, Vancouver, 2007.
  • Carrillo, R.E., J.D. McEwen, and Y. Wiaux. Sparsity Averaging Reweighted Analysis (SARA): a novel algorithm for radio-interferometric imaging. Mon. Not. R. Astron. Soc., 426 (2), 1223–1234, 2012, DOI: 10.1111/j.1365-2966.2012.21605.x. [NASA ADS] [CrossRef] [MathSciNet]
  • Chambolle, A., and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision, 40 (1), 120–145, 2011, DOI: 10.1007/s10851-010-0251-1. [CrossRef] [MathSciNet]
  • Chang, S., B. Yu, and M. Vetterli. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process., 9 (9), 1532–1546, 2000, DOI: 10.1109/83.862633. [NASA ADS] [CrossRef]
  • Combettes, P.L., and J.-C. Pesquet. Proximal splitting methods in signal processing. In: H.H., Bauschke, R.S. Burachik, P.L. Combettes, V. Elser, D.R. Luke, and H. Wolkowicz, Editors. Fixed-point algorithms for inverse problems in science and engineering, vol. 49 of Springer optimization and its applications, Springer, New York, 185–212, ISBN: 978-1-4419-9568-1, 2011, DOI: 10.1007/978-1-4419-9569-8_10. [CrossRef] [MathSciNet]
  • DeForest, C.E., P.C.H. Martens, and M.J. Wills-Davey. Solar coronal structure and stray light in TRACE. Astrophys. J., 690, 1264–1271, 2009, DOI: 10.1088/0004-637X/690/2/1264. [NASA ADS] [CrossRef]
  • Dong, W., H. Feng, Z. Xu, and Q. Li. A piecewise local regularized Richardson-Lucy algorithm for remote sensing image deconvolution. Opt. Laser Technol., 43 (5), 926–933, 2011, DOI: 10.1016/j.optlastec.2010.12.012. [CrossRef]
  • Donoho, D. De-noising by soft-thresholding. IEEE Trans. Inf. Theory, 41 (3), 613–627, 1995, DOI: 10.1109/18.382009. [CrossRef] [MathSciNet]
  • Donoho, D.L., and I.M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc., 90 (432), 1200–1224, 1995, DOI: 10.1080/01621459.1995.10476626. [CrossRef] [MathSciNet]
  • Donoho, D.L., and J.M. Johnstone. Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81 (3), 425–455, 1994, DOI: 10.1093/biomet/81.3.425. [CrossRef] [MathSciNet]
  • Dupé, F.-X., J. Fadili, and J.-L. Starck. A proximal iteration for deconvolving Poisson noisy images using sparse representations. IEEE Trans. Image Process., 18 (2), 310–321, 2009, DOI: 10.1109/TIP.2008.2008223. [NASA ADS] [CrossRef]
  • Elad, M., M. Figueiredo, and Y. Ma. On the role of sparse and redundant representations in image processing. Proc. IEEE, 98 (6), 972–982, 2010, DOI: 10.1109/JPROC.2009.2037655. [CrossRef]
  • Fergus, R., B. Singh, A. Hertzmann, S.T. Roweis, and W.T. Freeman. Removing camera shake from a single photograph. ACM Trans. Graph., 25 (3), 787–794, 2006, DOI: 10.1145/1141911.1141956. [CrossRef]
  • Fish, D.A., J.G. Walker, A.M. Brinicombe, and E.R. Pike. Blind deconvolution by means of the Richardson-Lucy algorithm. J. Opt. Soc. Am. A, 12 (1), 58–65, 1995, DOI: 10.1364/JOSAA.12.000058. [CrossRef]
  • Gburek, S., J. Sylwester, and P. Martens. The trace telescope point spread function for the 171 Å filter. Sol. Phys., 239, 531–548, 2006, DOI: 10.1007/s11207-006-1994-0. [NASA ADS] [CrossRef]
  • González, A., L. Jacques, C.D. Vleeschouwer, and P. Antoine. Compressive optical deflectometric tomography: a constrained total-variation minimization approach. Inverse Prob. Imaging, 8 (2), 421–457, 2014, DOI: 10.3934/ipi.2014.8.421. [CrossRef]
  • Gray, R.M. Toeplitz and circulant matrices: a review. Found. Trends Commun. Inf. Theory, 2 (3), 155–239, 2006, DOI: 10.1561/0100000006. [CrossRef]
  • Grigis, P., S. Yingna, and M. Weber. AIA PSF characterization and image deconvolution. Tech. Rep., AIA team, 2013.
  • Hoeffding, W. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc., 58 (301), 13–30, 1963, DOI: 10.1080/01621459.1963.10500830. [CrossRef] [MathSciNet]
  • Howard, R.A., J.D. Moses, A. Vourlidas, J.S. Newmark, D.G. Socker, et al. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev., 136, 67–115, 2008, DOI: 10.1007/s11214-008-9341-4. [NASA ADS] [CrossRef]
  • Jefferies, S., K. Schulze, C. Matson, K. Stoltenberg, and E.K. Hege. Blind deconvolution in optical diffusion tomography. Opt. Express, 10 (1), 46–53, 2002, DOI: 10.1364/OE.10.000046. [CrossRef]
  • Lemen, J.R., A.M. Title, D.J. Akin, P.F. Boerner, and C. Chou. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys., 275 (1–2), 17–40, 2012, DOI: 10.1007/s11207-011-9776-8. [NASA ADS] [CrossRef]
  • Mallat, S. Wavelet Tour of Signal Processing, Third Edition: The Sparse Way, 3rd edn., Academic Press, ISBN: 0123743702, 9780123743701, 2008.
  • Martens, P.C., L.W. Acton, and J.R. Lemen. The point spread function of the soft X-ray telescope aboard YOHKOH. Sol. Phys., 157 (1–2), 141–168, 1995, DOI: 10.1007/BF00680614. [CrossRef]
  • Meftah, M., J.-F. Hochedez, A. Irbah, A. Hauchecorne, P. Boumier, et al. Picard SODISM, a space telescope to study the sun from the middle ultraviolet to the near infrared. Sol. Phys., 289 (3), 1043–1076, 2014, DOI: 10.1007/s11207-013-0373-x. [NASA ADS] [CrossRef]
  • Nightingale, R.W. AIA/SDO FITS keywords for scientific usage and data processing at levels 0, 1.0, and 1.5. Tech. Rep., Lockheed-Martin Solar and Astrophysics Laboratory (LMSAL), 2011.
  • Oliveira, J.A.P., M.A.T. Figueiredo, and J.M. Bioucas-Dias. Blind estimation of motion blur parameters for image deconvolution. In: J., Mart, J. Bened, A. Mendona, and J. Serrat, Editors. Pattern Recognition and Image Analysis, vol. 4478 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 604–611, ISBN: 978-3-540-72848-1, 2007, DOI: 10.1007/978-3-540-72849-8_76.
  • Parikh, N., and S. Boyd. Proximal algorithms. Found. Trends Optim., 1 (3), 127–239, 2014, DOI: 10.1561/2400000003. [CrossRef] [MathSciNet]
  • Pence, W., R. Seaman, and R. White. A comparison of lossless image compression methods and the effects of noise. In: Astronomical Data Analysis Software and Systems XVIII, ASP Conference Series, Vol. 411, 25, 2009.
  • Pesnell, W.D., B.J. Thompson, and P.C. Chamberlin. The Solar Dynamics Observatory (SDO). Sol. Phys., 275 (1–2), 3–15, 2012, DOI: 10.1007/s11207-011-9841-3. [NASA ADS] [CrossRef]
  • Poduval, B., C.E. DeForest, J.T. Schmelz, and S. Pathak. Point-spread functions for the extreme-ultraviolet channels of SDO/AIA Telescopes. Astrophys. J., 765 (2), 144, 2013, DOI: 10.1088/0004-637X/765/2/144. [NASA ADS] [CrossRef]
  • Prato, M., A.L. Camera, S. Bonettini, and M. Bertero. A convergent blind deconvolution method for postadaptive-optics astronomical imaging. Inverse Prob., 29 (6), 065017, 2013, , DOI: 0266-5611-29-6-065017. [CrossRef]
  • Prato, M., R. Cavicchioli, L. Zanni, P. Boccacci, and M. Bertero. Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes. A&A, 539, A133, 2012, DOI: 10.1051/0004-6361/201118681. [NASA ADS] [CrossRef] [EDP Sciences]
  • Puy, G., and P. Vandergheynst. Robust image reconstruction from multiview measurements. SIAM J. Imaging Sci., 7 (1), 128–156, 2014, DOI: 10.1137/120902586. [CrossRef]
  • Raguet, H., J. Fadili, and G. Peyré. A generalized forward-backward splitting. SIAM J. Imaging Sci., 6 (3), 1199–1226, 2013, DOI: 10.1137/120872802. [CrossRef] [MathSciNet]
  • Seaton, D.B., A. Degroof, P. Shearer, D. Berghmans, and B. Nicula. SWAP observations of the long-term, large-scale evolution of the extreme-ultraviolet solar corona. Astrophys. J, 777 (1), 72, 2013, DOI: 10.1088/0004-637X/777/1/72. [CrossRef]
  • Shearer, P., R.A. Frazin, A.O. Hero III, and A.C. Gilbert. The first stray light corrected extreme ultraviolet images of solar coronal holes. Astrophys. J., 749, L8, 2012, DOI: 10.1088/2041-8205/749/1/L8. [CrossRef]
  • Shearer, P.R. Separable inverse problems, blind deconvolution, and stray light correction for extreme ultraviolet solar images. Ph.D. thesis, The University of Michigan, 2013.
  • Starck, J.-L., M. Elad, D. Donoho. Redundant multiscale transforms and their application for morphological component separation. Adv. Imaging Electron Phys., 132, 287–348, 2004, DOI: 10.1016/S1076-5670(04)32006-9. [CrossRef]
  • Starck, J.-L. and M. Fadili. An overview of inverse problem regularization using sparsity. Image Processing (ICIP), 2009 16th IEEE International Conference on, Cairo, 1453–1456, 2009, DOI: 10.1109/ICIP.2009.5414556.
  • Starck, J.-L., and F. Murtagh. Image restoration with noise suppression using the wavelet transform. A&A, 288 (1), 342–348, 1994.
  • Starck, J.-L., F. Murtagh, and J. Fadili. Sparse image and signal processing: wavelets, curvelets, morphological diversity, Cambridge University Press, New York, NY, USA, ISBN: 0521119138, 9780521119139, 2010. [CrossRef]
  • Stein, C.M. Estimation of the mean of a multivariate normal distribution. Ann. Stat., 9 (6), 1135–1151, 1981, DOI: 10.1214/aos/1176345632. [CrossRef] [MathSciNet]
  • Sudhakar, P., L. Jacques, X. Dubois, P. Antoine, and L. Joannes. Compressive imaging and characterization of sparse light deflection maps. SIAM J. Imaging Sci., 8 (3), 1824–1856, 2015, DOI: 10.1137/140974341. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.