Brightness Variations of the Sun and Sun-like Stars and Resulting Influences on their Environments
Open Access
J. Space Weather Space Clim.
Volume 6, 2016
Brightness Variations of the Sun and Sun-like Stars and Resulting Influences on their Environments
Article Number A33
Number of page(s) 13
Published online 05 September 2016
  • Andrews, M.B., J.R. Knight, and L.J. Gray. A simulated lagged response of the North Atlantic Oscillation to the solar cycle over the period 1960–2009. Environ. Res. Lett., 10, 054022, 2015, DOI: 10.1088/1748-9326/10/5/054022. [CrossRef]
  • Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, and J.W. Harder. Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model. Astron. Astrophys., 530, A71, 2011, DOI: 10.1051/0004-6361/201016189. [CrossRef]
  • Ball, W.T., N.A. Krivova, Y.C. Unruh, J.D. Haigh, and S. Solanki. A new SATIRE-S spectral solar irradiance reconstruction for solar cycles 21–23 and its implications for stratospheric ozone. J. Atmos. Sci., 71, 4086–4101, 2014, DOI: 10.1175/JAS-D-13-0241.1. [NASA ADS] [CrossRef]
  • Barnhart, B.L., and W.E. Eichinger. Analysis of sunspot variability using the Hilbert-Huang transform. Sol. Phys., 269, 439–449, 2011, DOI: 10.1007/s11207-010-9701-6. [CrossRef]
  • Cook, J.W., G.E. Brueckner, and M.E. Vanhoosier. Variability of the solar flux in the ultraviolet 1175–2100 Å. J. Geophys. Res., 85, 2257–2268, 1980, DOI: 10.1029/JA085iA05p02257. [CrossRef]
  • Deland, M.T., and R.P. Cebula. Solar UV variations during the decline of Cycle 23. J. Atmos. Sol. Terr. Phys., 77, 225–234, 2012, DOI: 10.1016j.jastp.2012.01.007. [NASA ADS] [CrossRef]
  • Dikty, S., M. Weber, C. von Savigny, T. Sonkaew, A. Rozanov, and J.P. Burrows. Modulations of the 27 day solar rotation signal in stratospheric ozone from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (2003–2008). J. Geophys. Res., 115, 2010, DOI: 10.1029/2009JD012379. [CrossRef]
  • Domingo, V., I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, et al. Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev., 145, 337–380, 2009, DOI: 10.1007/s11214-009-9562-1. [NASA ADS] [CrossRef]
  • Dudok de Wit, T., M. Kretzschmar, J. Lilensten, and T. Woods. Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett., 36, L10107, 2009, DOI: 10.1029/2009GL037825. [NASA ADS] [CrossRef]
  • Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modeling. Atmos. Chem. Phys., 13, 3945–3977, 2013, DOI: 10.5194/acp-13-3945-2013. [NASA ADS] [CrossRef]
  • Fioletov, V.E. Estimating the 27-day and 11-year solar cycle variations in tropical upper stratospheric ozone. J. Geophys. Res., 114, D02302, 2009, DOI: 10.1029/2008JD010499. [CrossRef]
  • Floyd, L.E., J.W. Cook, L.C. Herring, and P.C. Crane. SUSIM’S 11-year observational record of the solar UV irradiance. Adv. Space Res., 31, 2111–2120, 2003, DOI: 10.1016/S0273-1177(03)00148-0. [NASA ADS] [CrossRef]
  • Fontenla, J.M., J. Harder, W. Livingston, M. Snow, and T. Woods. High resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res., 116, D20108, 2011, DOI: 10.1029/2011JD016032. [NASA ADS] [CrossRef]
  • Fröhlich, C., and J. Lean Solar radiative output and its variability: evidence and mechanisms. Astron. Astrophys. Rev., 12, 273–320, 2004, DOI: 10.1007/s00159-004-0024-1. [NASA ADS] [CrossRef]
  • Gray, L.J., J. Beer, M. Geller, J.D. Haigh, and M. Lockwood. Solar influences on climate. Rev. Geophys., 48, RG4001, 2010, DOI: 10.1029/2009RG000282. [NASA ADS] [CrossRef]
  • Haigh, J.D. The Sun and the Earth’s Climate. Living Rev. Sol. Phys., 4, 2, 2007, DOI: 10.12942/lrsp-2007-2. [CrossRef]
  • Haigh, J.D., A.R. Winning, R. Toumi, and J.W. Harder. An influence of solar spectral variations on radiative forcing of climate. Nature, 467, 696–699, 2010, DOI: 10.1038/nature09426. [NASA ADS] [CrossRef] [PubMed]
  • Harder, J., G. Lawrence, J. Fontenla, G. Rottman, and T. Woods. The spectral irradiance monitor: scientific requirements, instrument design, and operation modes. Sol. Phys., 230, 141–167, 2005, DOI: 10.1007/s11207-005-5007-5. [NASA ADS] [CrossRef]
  • Harder, J.W., J.M. Fontenla, P. Pilewskie, E.C. Richard, and T.N. Woods. Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett., 36, L07801, 2009, DOI: 10.1029/2008GL036797. [NASA ADS] [CrossRef]
  • Huang, N.E., Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, and H.H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc., Ser. A, 454, 903–995, 1998. [NASA ADS] [CrossRef]
  • Ineson, S., A.C. Maycock, L.J. Gray, A.A. Scaife, N. Dunstone, et al. Regional climate impacts of a possible future grand solar minimum. Nat. Commun., 6, 7535, 2015, DOI: 10.1038/ncomms8535. [CrossRef]
  • Kodera, K. Solar cycle modulation of the North Atlantic Oscillation: implications in the spatial structure of the NAO. Geophys. Res. Lett., 29 (8), 1218, 2002, DOI: 10.1029/2001GL014557. [CrossRef]
  • Kopp, G., and G. Lawrence. The Total Irradiance Monitor (TIM): instrument design. Sol. Phys., 230, 91–109, 2005, DOI: 10.1007/s11207-005-7446-4. [NASA ADS] [CrossRef]
  • Kopp, G., and J.L. Lean. A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett., 38, L01706, 2011, DOI: 10.1029/2010GL045777. [NASA ADS] [CrossRef]
  • Kopp, G., K. Heuerman, D. Harber, and V. Drake. The TSI radiometer facility – absolute calibrations for total solar irradiance instruments. Proc. SPIE, 6677, 667709, 2007, DOI: 10.1117/12.734553. [CrossRef]
  • Kopp, G., A. Fehlmann, W. Finsterle, D. Harber, and K. Heuerman. Total solar irradiance data record accuracy and consistency improvements. Metrologia, 49, S29–S33, 2012, DOI: MET/407161/SPE/275237. [NASA ADS] [CrossRef]
  • Kren, A.C., D.R. Marsh, A.K. Smith, and P. Pilewskie. Examining the stratospheric response to the solar cycle in a coupled WACCM simulation with an internally generated QBO. Atmos. Chem. Phys., 14, 4843–4856, 2014. [CrossRef]
  • Krivova, N.A., and S.K. Solanki. Models of solar irradiance variations: current status. J. Astrophys. Astron., 29, 151–158, 2008. [NASA ADS] [CrossRef]
  • Krivova, N.A., S.K. Solanki, and L. Floyd. Reconstruction of solar UV irradiance in cycle 23. Astron. Astrophys., 452, 631–639, 2006, DOI: 10.1051/0004-6361:20064809. [NASA ADS] [CrossRef] [EDP Sciences]
  • Krivova, N.A., S.K. Solanki, and Y.C. Unruh. Towards a long-term record of solar total and spectral irradiance. J. Atmos. Sol. Terr. Phys., 73, 223–234, 2011, DOI: 10.1016/j.jastp.2009.11.013. [NASA ADS] [CrossRef]
  • Kurucz, R.L. Finding the missing solar ultraviolet opacity. Rev. Mex. Astron. Astrofis., 23, 181, 1992.
  • Lagg, A., S.K. Solanki, T.L. Riethmüller, V. Martínez Pillet, M. Schüssler, et al. Fully resolved quiet-sun magnetic flux tube observed with the SUNRISE/IMAX instrument. Astrophys. J. Lett., 723, L164, 2010. [NASA ADS] [CrossRef]
  • Lawrence, G.M., G. Rottman, J. Harder, and T. Woods. Solar Total Irradiance Monitor: TIM. Metrologia, 37, 407–410, 2000. [CrossRef]
  • Lean, J. Variations in the sun’s radiative output. Rev. Geophys., 29, 505–535, 1991, DOI: 10.1029/91RG01895. [NASA ADS] [CrossRef]
  • Lean, J. The Sun’s variable radiation and its relevance for Earth. Annu. Rev. Astron. Astrophys., 35, 33–67, 1997, DOI: 10.1146/annurev.astro.35.1.33. [NASA ADS] [CrossRef]
  • Lean, J., and M.T. DeLand. How does the Sun’s spectrum vary? J. Climate, 25, 2555–2560, 2012, DOI: 10.1175/JCLI-D-11-00571.1. [NASA ADS] [CrossRef]
  • Lean, J., G. Rottman, J. Harder, and G. Kopp. SORCE contributions to new understanding of global change and solar variability. Sol. Phys., 230, 27–53, 2005, DOI: 10.1007/s11207-005-1527-2. [NASA ADS] [CrossRef]
  • Lee, J.N., and S. Hameed. The Northern Hemisphere annular mode in summer: its physical significance and its relation to solar activity variations. J. Geophys. Res., 112, D15111, 2007, DOI: 10.1029/2007JD008394. [CrossRef]
  • Lee, J.N., S. Hameed, and D.T. Shindell. Northern annular mode in summer and its relation to solar activity variations in the GISS Model E. J. Atmos. Sol. Terr. Phys., 70, 730–741, 2008, DOI: 10.1016/j.jastp.2007.10.012. [CrossRef]
  • Lee, J.N., R.F. Cahalan, and D.L. Wu. The 27-Day rotational variations in total solar irradiance observations: from SORCE/TIM, ACRIM III, and SOHO/VIRGO. J. Atmos. Sol. Terr. Phys., 132, 64–73, 2015, DOI: 10.1016/j.jastp.2015.07.001. [NASA ADS] [CrossRef]
  • Li, K.-F., and K.-K. Tung. Quasi-Biennial oscillation and solar cycle influences on winter arctic total ozone. J. Geophys. Res., 119, 5823–5835, 2014, DOI: 10.1002/2013JD021065.
  • Liang, H., Q.-H. Lin, and J.D.Z. Chen. Application of the empirical mode decomposition to the analysis of esophageal manometric data in gastroesophageal reflux disease. IEEE Trans. Biomed. Eng., 52, 10, 2005. [CrossRef]
  • Lockwood, M., C. Bell, T. Woollings, R.G. Harrison, L.J. Gray, and J.D. Haigh. Top-down solar modulation of climate: evidence for centennial-scale change. Environ. Res. Lett., 5, 034008, 2010, DOI: 10.1088/1748-9326/5. [NASA ADS] [CrossRef]
  • Marchenko, S., and M.T. DeLand. Solar spectral irradiance changes during cycle 24. Astrophys. J., 789, 117, 2014, DOI: 10.1088/0004-637X/789/2/117. [CrossRef]
  • Merkel, A.W., J.W. Harder, D.R. Marsh, A.K. Smith, J.M. Fontenla, and T.N. Woods. The impact of solar spectral irradiance variability on middle atmospheric ozone. Geophys. Res. Lett., 38, L13802, 2011, DOI: 10.1029/2011GL047561. [NASA ADS] [CrossRef]
  • McClintock, W.E., G. Rottman, and T.N. Woods. Solar-stellar irradiance comparison experiment II (SOLSTICE II): instrument concept and design. Sol. Phys., 230, 225, 2005a, DOI: 10.1007/0-387-37625-9_12. [NASA ADS] [CrossRef]
  • McClintock, W.E., M. Snow, and T.N. Woods. Solar-stellar irradiance comparison experiment II (SOLSTICE II): pre-launch and on-orbit calibrations. Sol. Phys., 230, 259, 2005b, DOI: 10.1007/s11207-005-1585-5. [NASA ADS] [CrossRef]
  • Preminger, D.G., and S.R. Walton. A new model of total solar irradiance based on sunspot areas. Geophys. Res. Lett., 32, L14109, 2005, DOI: 10.1029/2005GL022839. [NASA ADS] [CrossRef]
  • Rempel, M., and R. Schlichenmaier. Sunspot modeling: from simplified models to radiative MHD simulations. Living Rev. Sol. Phys., 8, 3, 2011, DOI: 10.12942/lrsp-2011-3. [CrossRef]
  • Rottman, G. Solar ultraviolet irradiance and its temporal variations. J. Atmos. Sol. Terr. Phys., 61, 37–44, 1999, DOI: 10.1016/S1364-6826(98)00014-X. [CrossRef]
  • Rottman, G. Measurements of total and spectral solar irradiance. Space Sci. Rev., 125, 39, 2006, DOI: 10.1007/s11214-006-9045-6. [NASA ADS] [CrossRef]
  • Rottman, G., T.W. Woods, M. Snow, and G. DeToma. The solar cycle variation in ultraviolet irradiance. Adv. Space Res., 27, 1927–1932, 2001, DOI: 10.1016/S0273-1177(01)00272-1. [NASA ADS] [CrossRef]
  • Rottman, G., L. Floyd, and R. Viereck. Measurement of the solar ultraviolet irradiance in solar variability and its effect on climate. Geophysical Monograph, 141, 111–125, 2004.
  • Rottman, G., T.W. Woods, and V. George. Solar radiation and climate experiment. Sol. Phys., 230, 185, 2005.
  • Ruzmaikin, A., M.L. Santee, M.J. Schwartz, L. Froidevaux, and H.M. Pickett. The 27-day variations in stratospheric ozone and temperature: new MLS data. Geophys. Res. Lett., 34, L02819, 2007, DOI: 10.1029/2006GL028419. [CrossRef]
  • Shapiro, A.I., S.K. Solanki, N.A. Krivova, R.V. Tagirov, and W.K. Schmutz. The role of the Fraunhofer lines in solar brightness variability. Astron. Astrophys., 581, A116, 2015. [CrossRef]
  • Shindell, D.T., G.A. Schmidt, R.L. Miller, and D. Rind. Northern Hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing. J. Geophys. Res., 106, 7193–7210, 2001, DOI: 10.1029/2000JD900547. [CrossRef]
  • Snow, M., W.E. McClintock, G. Rottman, and T.N. Woods. Solar-stellar irradiance comparison experiment II (SOLSTICE II): examination of the solar stellar comparison technique. Sol. Phys., 230, 295, 2005. [NASA ADS] [CrossRef]
  • Solanki, S.K. Sunspots: an overview. Astron. Astrophys. Rev., 11, 153–286, 2003. [NASA ADS] [CrossRef]
  • Solanki, S.K., N.A. Krivova, and T. Wenzler. Irradiance models. Adv. Space Res., 35, 376–383, 2005. [NASA ADS] [CrossRef]
  • Spruit, H.C. The solar engine and its influence on terrestrial atmosphere and climate. NATO ASI Series I, vol. 25, Kluwer, Dordrecht, 107, 1994.
  • Stephens, G.L., J.L. Li, M. Wild, C.A. Clayson, N. Loeb, S. Kato, T. L’Ecuyer, P.W. Stackhouse, and T. Andrews. The energy balance of the earth’s climate system. Nat. Geosci., 5, 691–696, 2012, DOI: 10.1038/ngeo1580. [CrossRef]
  • Swartz, W.H., R.S. Stolarski, L.D. Oman, E.L. Fleming, and C.H. Jackman. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model. Atmos. Chem. Phys., 12, 5937–5948, 2012, DOI: 10.5194/acp-12-5937-2012. [CrossRef]
  • Topka, K.P., T.D. Tarbell, and A.M. Title. Properties of the smallest solar magnetic elements. II. Observations versus hot wall models of faculae. Astrophys. J., 484, 479, 1997. [NASA ADS] [CrossRef]
  • Unruh, Y.C., S.K. Solanki, and M. Fligge. The spectral dependence of facular contrast and solar irradiance variations. Astron. Astrophys., 345, 635–642, 1999.
  • Unruh, Y.C., N. Krivova, S. Solanki, J. Harder, and G. Kopp. Spectral irradiance variations: comparisons between observations and the SATIRE model on solar rotation time scales. Astron. Astrophys., 486, 311, 2008, DOI: 10.1051/0004-6361:20078421. [NASA ADS] [CrossRef] [EDP Sciences]
  • Viereck, R., L. Puga, D. McMullin, D. Judge, M. Weber, and W.K. Tobiska. A proxy for solar EUV. Geophys. Res. Lett., 28, 1343–1346, 2001. [NASA ADS] [CrossRef]
  • Wehrli, C., W. Schmutz, and A.I. Shapiro. Correlation of spectral solar irradiance with solar activity as measured by VIRGO. Astron. Astrophys., 556, L3, 2013, DOI: 10.1051/0004-6361/201220864. [CrossRef]
  • Wen, G., R.F. Cahalan, J.D. Haigh, P. Pilewskie, L. Oreopoulos, and J.W. Harder. Reconciliation of modeled climate responses to spectral solar forcing. J. Geophys. Res. [Atmos.], 118, 6281–6289, 2013, DOI: 10.1002/jgrd.50506. [CrossRef]
  • Wild, M., D. Folini, C. Schär, N. Loeb, E. Dutton, and G. König-Langlo. The global energy balance from a surface perspective. Clim. Dyn., 323, 2012, 3107, DOI: 10.1007/s00382-012-1569-8.
  • Woods, T.N., F.G. Eparvier, S.M. Bailey, P.C. Chamberlin, J. Lean, G.J. Rottman, S.C. Solomon, W.K. Tobiska, and D.L. Woodraska. Solar EUV experiment (SEE): mission overview and first results. J. Geophys. Res., 110, A01312, 2005, DOI: 10.1029/2004JA010765. [NASA ADS] [CrossRef]
  • Woods, T.N., M. Snow, J. Harder, G. Chapman, and A. Cookson. A different view of solar spectral irradiance variations: modeling total energy of six-month intervals. Sol. Phys., 290, 2649–2676, 2015, DOI: 10.1007/s11207-015-0766-0. [NASA ADS] [CrossRef]
  • Wu, Z., and N.E. Huang. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc., Ser. A, 460, 1597–1611, 2004. [NASA ADS] [CrossRef]
  • Yeo, K.L., N.A. Krivova, S.K. Solanki, and K.H. Glassmeier. Reconstruction of total and spectral solar irradiance since 1974 based on KPVT, SoHO/MDI and SDO/HMI observations. Astron. Astrophys., 570, A85, 2014, DOI: 10.1051/0004-6361/201423628. [NASA ADS] [CrossRef] [EDP Sciences]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.