Open Access
J. Space Weather Space Clim.
Volume 7, 2017
Article Number A2
Number of page(s) 13
Published online 12 January 2017
  • Bein, B.M., S. Berkebile-Stoiser, A.M. Veronig, M. Temmer, and B. Vršnak. Impulsive acceleration of coronal mass ejections. II. Relation to soft X-ray flares and filament eruptions. Astrophys. J., 755, 44, 2012, DOI: 10.1088/0004-637X/755/1/44. [CrossRef]
  • Cargill, P.J. On the aerodynamic drag force acting on interplanetary coronal mass ejections. Sol. Phys., 221, 135–149, 2004, DOI: 10.1023/B:SOLA.0000033366.10725.a2. [NASA ADS] [CrossRef]
  • Caroubalos, C. Contribution à l’étude de l’activité solaire en relation avec ses effects géophysiques. Ann. Astrophys., 27, 333, 1964.
  • Chen, J., and V. Kunkel. Temporal and physical connection between coronal mass ejections and flares. Astrophys. J., 717, 1105–1122, 2010, DOI: 10.1088/0004-637X/717/2/1105. [CrossRef]
  • Cliver, E.W., J. Feynman, and H.B. Garrett. An estimate of the maximum speed of the solar wind, 1938–1989. J. Geophys. Res., 95, 17103–17112, 1990, DOI: 10.1029/JA095iA10p17103. [CrossRef]
  • Colaninno, R.C., A. Vourlidas, and C.C. Wu. Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. J. Geophys. Res. [Space Phys], 118, 6866–6879, 2013, DOI: 10.1002/2013JA019205. [CrossRef]
  • Démoulin, P. Interaction of ICMEs with the solar wind. In: M., Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet, and F. Pantellini, Editors. Twelfth International Solar Wind Conference Vol. 1216 of AIP Conf. Proc., 329–334, 2010, DOI: 10.1063/1.3395866.
  • Elliott, H.A., D.J. McComas, N.A. Schwadron, J.T. Gosling, R.M. Skoug, G. Gloeckler, and T.H. Zurbuchen. An improved expected temperature formula for identifying interplanetary coronal mass ejections. J. Geophys. Res., 110, A04103, 2005, DOI: 10.1029/2004JA010794. [NASA ADS] [CrossRef]
  • Forbes, T.G., J.A. Linker, J. Chen, C. Cid, J. Kóta, et al. CME theory and models. Space Sci. Rev., 123, 251–302, 2006, DOI: 10.1007/s11214-006-9019-8. [NASA ADS] [CrossRef]
  • Gopalswamy, N. Coronal mass ejections and space weather. In: T., Tsuda, R. Fujii, K. Shibata, and M.A. Geller, Editors. Climate and Weather of the Sun-Earth System (CAWSES) Selected Papers from the 2007 Kyoto Symposium, TERRAPUB, Tokyo, 77–120, 2009.
  • Gopalswamy, N., A. Lara, R.P. Lepping, M.L. Kaiser, D. Berdichevsky, and O.C. St. Cyr. Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett., 27, 145–148, 2000, DOI: 10.1029/1999GL003639. [NASA ADS] [CrossRef]
  • Gopalswamy, N., A. Lara, S. Yashiro, M.L. Kaiser, and R.A. Howard. Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. [Space Phys], 106, 29207–29218, 2001, DOI: 10.1029/2001JA000177. [NASA ADS] [CrossRef]
  • Gopalswamy, N., P. Mäkelä, S. Akiyama, S. Yashiro, H. Xie, N. Thakur, and S.W. Kahler. Large solar energetic particle events associated with filament eruptions outside of active regions. Astrophys. J., 806, 8, 2015, DOI: 10.1088/0004-637X/806/1/8. [CrossRef]
  • Gopalswamy, N., P. Mäkelä, H. Xie, and S. Yashiro. Testing the empirical shock arrival model using quadrature observations. Space Weather, 11, 661–669, 2013, DOI: 10.1002/2013SW000945. [CrossRef]
  • Gosling, J.T., V. Pizzo, and S.J. Bame. Anomalously low proton temperatures in the solar wind following interplanetary shock waves – evidence for magnetic bottles? J. Geophys. Res. [Space Phys], 78, 2001, 1973, DOI: 10.1029/JA078i013p02001. [CrossRef]
  • Jian, L., C.T. Russell, J.G. Luhmann, and R.M. Skoug. Properties of interplanetary coronal mass ejections at one AU during 1995–2004. Sol. Phys., 239, 393–436, 2006, DOI: 10.1007/s11207-006-0133-2. [NASA ADS] [CrossRef]
  • Maričić, D., B. Vršnak, A.L. Stanger, A.M. Veronig, M. Temmer, and D. Roša. Acceleration phase of coronal mass ejections: II. Synchronization of the energy release in the associated flare. Sol. Phys., 241, 99–112, 2007, DOI: 10.1007/s11207-007-0291-x. [NASA ADS] [CrossRef]
  • Mays, M.L., A. Taktakishvili, A. Pulkkinen, P.J. MacNeice, L. Rastätter, et al. Ensemble modeling of CMEs using the WSA-ENLIL+Cone model. Sol. Phys., 290, 1775–1814, 2015, DOI: 10.1007/s11207-015-0692-1. [CrossRef]
  • Millward, G., D. Biesecker, V. Pizzo, and C.A. Koning. An operational software tool for the analysis of coronagraph images: Determining CME parameters for input into the WSA-Enlil heliospheric model. Space Weather, 11, 57–68, 2013, DOI: 10.1002/swe.20024. [CrossRef]
  • Möstl, C., K. Amla, J.R. Hall, P.C. Liewer, E.M. De Jong, et al. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU. Astrophys. J., 787, 119, 2014, DOI: 10.1088/0004-637X/787/2/119. [CrossRef]
  • Nakajima, H., H. Sekiguchi, M. Sawa, K. Kai, and S. Kawashima. The radiometer and polarimeters at 80, 35, and 17 GHz for solar observations at Nobeyama. Publ. Astron. Soc. Jpn., 37, 163–170, 1985.
  • Núñez, M., T. Nieves-Chinchilla, and A. Pulkkinen. Prediction of shock arrival times from CME and flare data. Space Weather, 2016, in press.
  • Odstrcil, D., V.J. Pizzo, J.A. Linker, P. Riley, R. Lionello, and Z. Mikic. Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes. J. Atmos. Sol. Terr. Phys., 66, 1311–1320, 2004, DOI: 10.1016/j.jastp.2004.04.007. [CrossRef]
  • Owens, M., and P. Cargill. Predictions of the arrival time of coronal mass ejections at 1AU: an analysis of the causes of errors. Ann. Geophys., 22, 661–671, 2004, DOI: 10.5194/angeo-22-661-2004. [CrossRef]
  • Reeves, K.K., and S.J. Moats. Relating coronal mass ejection kinematics and thermal energy release to flare emissions using a model of solar eruptions. Astrophys. J., 712, 429–434, 2010, DOI: 10.1088/0004-637X/712/1/429. [CrossRef]
  • Rouillard, A.P. Relating white light and in situ observations of coronal mass ejections: a review. J. Atmos. Sol. Terr. Phys., 73, 1201–1213, 2011, DOI: 10.1016/j.jastp.2010.08.015. [NASA ADS] [CrossRef]
  • Salas-Matamoros, C., and K.-L. Klein. On the statistical relationship between CME speed and soft X-ray flux and fluence of the associated flare. Sol. Phys., 290, 1337–1353, 2015, DOI: 10.1007/s11207-015-0677-0. [CrossRef]
  • Schwenn, R., A. Dal Lago, E. Huttunen, and W.D. Gonzalez. The association of coronal mass ejections with their effects near the Earth. Ann. Geophys., 23, 1033–1059, 2005, DOI: 10.5194/angeo-23-1033-2005. [NASA ADS] [CrossRef]
  • Shi, T., Y. Wang, L. Wan, X. Cheng, M. Ding, and J. Zhang. Predicting the arrival time of coronal mass ejections with the graduated cylindrical shell and drag force model. Astrophys. J., 806, 271, 2015, DOI: 10.1088/0004-637X/806/2/271. [CrossRef]
  • Temmer, M., A.M. Veronig, V. Peinhart, and B. Vršnak. Asymmetry in the CME-CME interaction process for the events from 2011 February 14–15. Astrophys. J., 785, 85, 2014, DOI: 10.1088/0004-637X/785/2/85. [NASA ADS] [CrossRef]
  • Thernisien, A., A. Vourlidas, and R.A. Howard. Forward modeling of coronal mass ejections using STEREO/SECCHI data. Sol. Phys., 256, 111–130, 2009, DOI: 10.1007/s11207-009-9346-5. [NASA ADS] [CrossRef]
  • Tobiska, W.K., D. Knipp, W.J. Burke, D. Bouwer, J. Bailey, D. Odstrcil, M.P. Hagan, J. Gannon, and B.R. Bowman. The Anemomilos prediction methodology for Dst. Space Weather, 11, 490–508, 2013, DOI: 10.1002/swe.20094. [CrossRef]
  • Trottet, G., S. Samwel, K.-L. Klein, T. Dudok deWit, and R. Miteva. Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Sol. Phys., 290, 819–839, 2015, DOI: 10.1007/s11207-014-0628-1. [CrossRef]
  • Vršnak, B., D. Ruždjak, D. Sudar, and N. Gopalswamy. Kinematics of coronal mass ejections between 2 and 30 solar radii. What can be learned about forces governing the eruption? A&A, 423, 717–728, 2004, DOI: 10.1051/0004-6361:20047169. [NASA ADS] [CrossRef] [EDP Sciences]
  • Vršnak, B., M. Temmer, T. Žic, A. Taktakishvili, M. Dumbović, C. Möstl, A.M. Veronig, M.L. Mays, and D. Odstrčil. Heliospheric propagation of coronal mass ejections: comparison of numerical WSA ENLIL cone model and analytical drag-based model. Astrophys. J. Suppl., 213, 21, 2014, DOI: 10.1088/0067-0049/213/2/21. [CrossRef]
  • Vršnak, B., and T. Žic. Transit times of interplanetary coronal mass ejections and the solar wind speed. A&A, 472, 937–943, 2007, DOI: 10.1051/0004-6361:20077499. [NASA ADS] [CrossRef] [EDP Sciences]
  • Vršnak, B., T. Žic, D. Vrbanec, M. Temmer, T. Rollett, et al. Propagation of interplanetary coronal mass ejections: the drag-based model. Sol. Phys., 285, 295–315, 2013, DOI: 10.1007/s11207-012-0035-4. [NASA ADS] [CrossRef]
  • Wu, C.-C., M. Dryer, S.T. Wu, B.E. Wood, C.D. Fry, K. Liou, and S. Plunkett. Global three-dimensional simulation of the interplanetary evolution of the observed geoeffective coronal mass ejection during the epoch 1–4 August 2010. J. Geophys. Res. [Space Phys], 116, A12103, 2011, DOI: 10.1029/2011JA016947.
  • Zhang, J., I.G. Richardson, D.F. Webb, N. Gopalswamy, and E. Huttunen. Solar and interplanetary sources of major geomagnetic storms (Dst = −100 nT) during 1996–2005. J. Geophys. Res., 112, 10102, 2007, DOI: 10.1029/2007JA012321.