Open Access
Issue
J. Space Weather Space Clim.
Volume 5, 2015
Article Number A11
Number of page(s) 10
DOI https://doi.org/10.1051/swsc/2015012
Published online 04 June 2015
  • Arnold, F. Atmospheric Aerosol and cloud condensation nuclei formation: a possible influence of cosmic rays? Space Sci. Rev., 125 (1–4), 169–186, 2006. [CrossRef]
  • Balling Jr., R.C., and R.S. Cerveny. Cosmic ray flux impact on clouds? An analysis of radiosondes, cloud cover, and surface temperature records from the United States. Theor. Appl. Climatol., 75, 225–231, 2003. [CrossRef]
  • Čalogović, J., C. Albert, F. Arnold, J. Beer, L. Desorgher, and E.O. Flueckiger. Sudden cosmic ray decreases: no change of global cloud cover. Geophys. Res. Lett., 37, L03802, 2010, DOI: 10.1029/2009GL041327.
  • Dunne, E., L. Lee, C. Reddington, and K.S. Carslaw. No statistically significant effect of a short-term decrease in the nucleation rate on atmospheric aerosols. Atmos. Chem. Phys., 12 (23), 11573–11587, 2012. [CrossRef]
  • Erlykin, A.D., G. Gyalai, K. Kudela, T. Sloan, and A.W. Wolfendale. Some aspects of ionization and the cloud cover, cosmic ray correlation problem. J. Atmos. Sol. Terr. Phys., 71 (8–9), 823–829, 2009a, DOI: 10.1016/j.jastp.2009.03.007. [CrossRef]
  • Erlykin, A.D., T. Sloan, and A.W. Wolfendale. The search for cosmic ray effects on clouds. J. Atmos. Sol. Terr. Phys., 71 (8–9), 955–958, 2009b, DOI: 10.1016/j.jastp.2009.03.019. [CrossRef]
  • Erlykin, A.D., G. Gyalai, K. Kudela, T. Sloan, and A.W. Wolfendale. On the correlation between cosmic ray intensity and cloud cover. J. Atmos. Sol. Terr. Phys., 71, 1794–1806, 2009c, DOI: 10.1016/j.jastp.2009.06.012. [CrossRef]
  • Erlykin, A., T. Sloan, and A. Wolfendale. Correlations of clouds, cosmic rays and solar irradiation over the Earth. J. Atmos. Sol. Terr. Phys., 72, 151–156, 2010, DOI: 10.1016/j.jastp.2009.11.002. [CrossRef]
  • Erlykin, A., T. Sloan, and A. Wolfendale. A review of the relevance of the “CLOUD” results and other recent observations to the possible effect of cosmic rays on the terrestrial climate. Meteorol. Atmos. Phys., 121, 137–142, 2013, DOI: 10.1007/s00703-013-0260-x. [CrossRef]
  • Farrar, P. Are cosmic rays influencing oceanic cloud coverage – or is it only el nino? Clim. Change, 47, 7–15, 2000. [CrossRef]
  • Kazil, J., K. Zhang, P. Stier, J. Feichter, U. Lohmann, and K. O’Brien. The present-day decadal solar cycle modulation of Earth’s radiative forcing via charged H2SO4/H20 aerosol nucleation. Geophys. Res. Lett., 39, 2, 2012. [CrossRef]
  • Kirkby, J., J. Curtius, J. Almeida, E. Dunne, and J. Duplissy, et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 476, 429–433, 2011. [CrossRef]
  • Kristjansson, J.E., A. Staple, and J. Kristiansen. A new look at possible connections between solar activity, clouds and climate. Geophys. Res. Lett., 29, 2017, 2002. [CrossRef]
  • Kristjansson, J., J. Kristiansen, and E. Kaas. Solar activity, cosmic rays, clouds and climate – an update. Adv. Space Res., 34, 407–415, 2004. [CrossRef]
  • Kristjannson, J., C.W. Stjern, F. Stordal, A.M. Fjaeraa, G. Myhre, and K. Jonasson. Cosmic rays, cloud condensation nuclei and clouds – a reassessments using MODIS data. Atmos. Chem. Phys., 8, 7373–7387, 2008. [CrossRef]
  • Laken, B.A., and J. Čalogović. Solar irradiance, cosmic rays and cloudiness over daily timescales. Geophys. Res. Lett., 38, L24811, 2011, DOI: 10.1029/2011GL048764. [CrossRef]
  • Laken, B.A., and J. Čalogović. Composite analysis with Monte Carlo methods: an example with cosmic rays and clouds. J. Space Weather Space Clim., 3, A29, 2013. [CrossRef] [EDP Sciences]
  • Laken, B.A., and D. Kniveton. Forbush decreases and Antarctic cloud anomalies in the upper troposphere. J. Atmos. Sol. Terr. Phys., 73, 371–376, 2011, DOI: 10.1016/j.jastp.2010.03.008. [CrossRef]
  • Laken, B., D. Kniveton, and A. Wolfendale. Forbush decreases, solar irradiance variations, and anomalous cloud changes. J. Geophys. Res. [Atmos.], 116, D09201, 2011, DOI: 10.1029/2010JD014900. [CrossRef]
  • Laken, B.A., E. Palle, J. Čalogović, and E.M. Dunne. A cosmic ray-climate link and cloud observations. J. Space Weather Space Clim., 2, A18, 2012a, DOI: 10.1051/swsc/2012018. [CrossRef] [EDP Sciences]
  • Laken, B.A., E. Palle, and H. Miyahara. A decade of the moderate resolution imaging spectroradiometer: is a solar cloud link detectable? J. Clim., 25 (13), 4430–4440, 2012b. [CrossRef]
  • Laut, P. Solar activity and terrestrial climate: an analysis of some purported correlations. J. Atmos. Sol. Terr. Phys., 65, 801–812, 2003. [CrossRef]
  • Lean, J., and D. Rind. Climate forcing by changing solar radiation. J. Clim., 11, 3069–3094, 1998. [CrossRef]
  • Livezey, R.E., and W.Y. Chen. Statisical field significance and its determination by Monte Carlo techniques. Monthly Weather Review, 111, 46–59, 1983. [CrossRef]
  • Marsh, N., and H. Svensmark. Cosmic rays, clouds and climate. Space Sci. Rev., 94, 215–230, 2000. [CrossRef]
  • Mesinger, F., G. DiMego, E. Kalnay, K. Mitchel, P.C. Shafran, et al. North American Regional Reanalysis. Bull. Am. Meteorol. Soc., 87 (3), 343–360, 2006. [CrossRef]
  • Palle, E. Possible satellite perspective effects on the reported correlations between solar activity and clouds. Geophys. Res. Lett, 32, L03802, 2005.
  • Palus, M., J. Kurths, U. Schwarz, N. Seehafer, D. Novotna, and T. Charvatova. The Solar Activity Cycle is Weakly Synchronized with the Solar Inertial Motion. Phys. Lett. A, 365 (5-6), 421–428, 2007, DOI: 10.1016/j.physleta.2007.01.039. [CrossRef]
  • Roy, I., and J. Haigh. Solar cycle signals in sea level pressure and sea surface temperature. Atmos. Chem. Phys., 10, 3147–3153, 2010. [CrossRef]
  • Snow-Kropla, E., J. Pierce, D. Westervelt, and W. Trivitayanurak. Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties. Atmos. Chem. Phys., 11 (8), 4001–4013, 2011. [CrossRef]
  • Svensmark, H. Cosmic rays and earth’s climate Space Sci. Rev., 155–166, 2000.
  • Svensmark, H., and E. Friis-Christensen. Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships. J. Atmos. Sol. Terr. Phys., 59, 1225–1232, 1997. [CrossRef]
  • Udelhofen, P., and R. Cess. Cloud cover variations over the United States: An influence of cosmic rays or solar variability? Geophys. Res. Lett., 28, 2517–2620, 2001. [CrossRef]
  • Usoskin, I.G., and G. Kovaltsov. Cosmic rays and climate of the Earth: possible connection. C.R. Geosci., 340, 441–450, 2008. [CrossRef]
  • Voiculescu, M., and I. Usoskin. Persistent solar signatures in cloud cover: spatial and temporal analysis. Environ. Res. Lett., 7, 044004, 2012. [CrossRef]
  • Voiculescu, M., I. Usoskin, and K. Mursula. Different response of clouds to solar input, Geophys. Res. Lett., 33, L21802, 2006. [CrossRef]
  • Wilks, D.S. On “Field Significance”, and the false discovery rate. Journal of Applied Meteorology and Climatology, 45, 1181–1189, 2006a. [CrossRef]
  • Wilks, D.S. Statistical methods in the atmosphere sciences, 100, 170–176, 2006b.
  • Yu, F. Altitude variations of cosmic ray induces production of aerosols: implications for global cloudiness and climate. J. Geophys. Res., 107, 1118, 2002. [CrossRef]
  • Zhao, Q., T. Black, and M. Baldwin. Implementation of the cloud prediction scheme in the Eta model at NCEP, Weather Forecast, 697–712, 1997. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.