Scientific Challenges in Thermosphere-Ionosphere Forecasting
Open Access
J. Space Weather Space Clim.
Volume 6, 2016
Scientific Challenges in Thermosphere-Ionosphere Forecasting
Article Number E01
Number of page(s) 10
Published online 14 October 2016
  • Borries, C., J. Berdermann, N. Jakowski, and V. Wilken. Ionospheric storms – a challenge for empirical forecast of the total electron content. J. Geophys. Res. [Space Phys.], 120 (4), 3175–3186, 2015, DOI: 10.1002/2015ja020988. [CrossRef]
  • Buonsanto, M. Ionospheric storms – a review. Space Sci. Rev., 88 (3–4), 563–601, 1999, DOI: 10.1023/A:1005107532631. [CrossRef]
  • Chartier, A.T., D.R. Jackson, and C.N. Mitchell. A comparison of the effects of initializing different thermosphere-ionosphere model fields on storm time plasma density forecasts. J. Geophys. Res. [Space Phys.], 118 (11), 7329–7337, 2013, DOI: 10.1002/2013JA019034. [CrossRef]
  • Colaninno, R.C., A. Vourlidas, and C.C. Wu. Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. J. Geophys. Res. [Space Phys.], 118 (11), 6866–6879, 2013, DOI: 10.1002/2013JA019205. [CrossRef]
  • Connor, H.K., E. Zesta, M. Fedrizzi, Y. Shi, J. Raeder, M.V. Codrescu, and T.J. Fuller-Rowell. Modeling the ionosphere-thermosphere response to a geomagnetic storm using physics-based magnetospheric energy input: OpenGGCM-CTIM results. J. Space Weather Space Clim., 6, A25, 2016, DOI: 10.1051/swsc/2016019. [CrossRef] [EDP Sciences]
  • Crowley, G., D.J. Knipp, K.A. Drake, J. Lei, E. Sutton, and H. Luhr. Thermospheric density enhancements in the dayside cusp region during strong B-Y conditions. Geophy. Res. Lett., 37, L07110, 2010, DOI: 10.1029/2009gl042143. [CrossRef]
  • Deng, Y., and A.J. Ridley. Possible reasons for underestimating Joule heating in global models: E field variability, spatial resolution, and vertical velocity. J. Geophys. Res. [Space Phys.], 112(A), A09308, 2007, DOI: 10.1029/2006JA012006.
  • Deng, Y., Y. Huang, J. Lei, A.J. Ridley, R. Lopez, and J. Thayer. Energy input into the upper atmosphere associated with high-speed solar wind streams in 2005. J. Geophys. Res. Space Phys., 116, A05303, 2011, DOI: 10.1029/2010JA016201.
  • Emery, B.A., D.S. Evans, M.S. Greer, E. Holeman, K. Kadinsky-Cade, F.J. Rich, and W. Xu. The low energy auroral electron and ion hemispheric power after NOAA and DMSP intersatellite adjustments. NCAR Technical Note, NCAR/TN-470+STR, HAO/NCAR, 2006.
  • Fang, T.-W., R. Akmaev, T. Fuller-Rowell, F. Wu, N. Maruyama, and G. Millward. Longitudinal and day-to-day variability in the ionosphere from lower atmosphere tidal forcing. Geophys. Res. Lett., 40, 2523–2528, 2013, DOI: 10.1002/grl.50. [CrossRef]
  • Forbes, J.M., S.L. Bruinsma, X. Zhang, and J. Oberheide. Surface-exosphere coupling due to thermal tides. Geophys. Res. Lett., 36, L15812, 2009, DOI: 10.1029/2009GL03874. [CrossRef]
  • Fuller-Rowell, T.J., and D.S. Evans. Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS/NOAA satellite data. J. Geophys. Res. [Space Phys.], 92, 7606–7618, 1987, DOI: 10.1029/JA092iA07p07606. [CrossRef]
  • Gonzalez, W.D., and B.T. Tsurutani. Criteria of interplanetary parameters causing intense magnetic storms (Dst less-than −100 nT). Planet. Space Sci., 35 (9), 1101–1109, 1987, DOI: 10.1016/0032-0633(87)90015-8. [NASA ADS] [CrossRef]
  • Gonzalez, W.D., B.T. Tsurutani, and A.L.C. De Gonzalez. Interplanetary origin of geomagnetic storms. Space Sci. Rev., 88 (3–4), 529–562, 1999, DOI: 10.1023/a:1005160129098. [NASA ADS] [CrossRef]
  • Gopalswamy, N., J.M. Davila, O.C. St. Cyr, E.C. Sittler, F. Auchère, et al. Earth-Affecting Solar Causes Observatory (EASCO): a potential international living with a star mission from Sun–Earth L5. J. Atmos. Sol. Terr. Phys., 73 (5–6), 658–663, 2011, DOI: 10.1016/j.jastp.2011.01.013. [CrossRef]
  • Hagan, M.E., A. Maute, R.G. Roble, A.D. Richmond, T.J. Immel, and S.L. England. Connections between deep tropical clouds and the Earth’s ionosphere. Geophys. Res. Lett., 34, L20109, 2007, DOI: 10.1029/2007GL030142 . [CrossRef]
  • Hagan, M.E., K. Haeusler, G. Lu, J.M. Forbes, and X. Zhang. Upper thermospheric responses to forcing from above and below during 1–10 April 2010: results from an ensemble of numerical simulations. J. Geophys. Res. [Space Phys.], 120 (4), 3160–3174, 2015, DOI: 10.1002/2014ja020706. [CrossRef]
  • Häusler, K., M.E. Hagan, J.M. Forbes, X. Zhang, E. Doornbos, S. Bruinsma, and G. Lu. Intraannual variability of tides in the thermosphere from model simulations and in situ satellite observations. J. Geophys. Res. [Space Phys.], 120 (1), 751–765, 2015, DOI: 10.1002/2014JA020579. [CrossRef]
  • He, M., L. Liu, W. Wan, and Y. Wei. Strong evidence for couplings between the ionospheric wave-4 structure and atmospheric tides. Geophys. Res. Lett., 38, L14101, 2011, DOI: 10.1029/2011GL047855 . [CrossRef]
  • Howard, R.A., et al.. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev., 136 (1), 67–115, 2008, DOI: 10.1007/s11214-008-9341-4. [NASA ADS] [CrossRef]
  • Huang, Y., A.D. Richmond, Y. Deng, and R. Roble. Height distribution of Joule heating and its influence on the thermosphere. J. Geophys. Res. [Space Phys.], 117, A08334, 2012, DOI: 10.1029/2012JA017885.
  • Huang, C.Y., Y.J. Su, E.K. Sutton, D.R. Weimer, and R.L. Davidson. Energy coupling during the August 2011 magnetic storm. J. Geophys. Res. [Space Phys.], 119 (2), 1219–1232, 2014, DOI: 10.1002/2013ja019297. [CrossRef]
  • Huang, C.Y.-Y., Y. Huang, Y.-J. Su, E.K. Sutton, M.R. Hairston, and W.R. Coley. Ionosphere-thermosphere (IT) response to solar wind forcing during magnetic storms. J. Space Weather Space Clim., 6, A4, 2016, DOI: 10.1051/swsc/2015041. [CrossRef] [EDP Sciences]
  • Immel, T.J., E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, and L.J. Paxton. The control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett., 33 (15), L15108, 2006, DOI: 10.1029/2006GL026161. [CrossRef]
  • Isavnin, A., A. Vourlidas, and E.K.J. Kilpua. Three-dimensional evolution of erupted flux ropes from the Sun (2–20 R ⊙) to 1 AU. Sol. Phys., 284 (May 1), 203–215, 2013, DOI: 10.1007/s11207-012-0214-3. [CrossRef]
  • Isavnin, A., A. Vourlidas, and E.K.J. Kilpua. Three-dimensional evolution of flux-rope CMEs and its relation to the local orientation of the heliospheric current sheet. Sol. Phys., 289 (6), 2141–2156, 2014, DOI: 10.1007/s11207-013-0468-4. [CrossRef]
  • Jin, H., Y. Miyoshi, H. Fujiwara, and H. Shinagawa. Electrodynamics of the formation of ionospheric wave number 4 longitudinal structure. J. Geophys. Res. [Space Phys.], 113, A09307, 2008, DOI: 10.1029/2008JA013301. [CrossRef]
  • Jones Jr., M., J.M. Forbes, M.E. Hagan, and A. Maute. Non-migrating tides in the ionosphere-thermosphere: in-situ versus tropospheric sources. J. Geophys. Res. [Space Phys.], 118, 2438–2451, 2013, DOI: 10.1002/jgra.50257. [CrossRef]
  • Kaiser, M.L., T.A. Kucera, J.M. Davila, O.C.S. Cyr, M. Guhathakurta, and E. Christian. The STEREO mission: an introduction. Space Sci. Rev., 136 (1), 5–16, 2008, DOI: 10.1007/s11214-007-9277-0. [NASA ADS] [CrossRef]
  • Kalnay, E. Atmospheric modeling, data assimilation and predictability, Cambridge University Press, NY, ISBN: 978-0521796293, 2002. [CrossRef]
  • Knipp, D., S. Eriksson, L. Kilcommons, G. Crowley, J. Lei, M. Hairston, and K. Drake. Extreme Poynting flux in the dayside thermosphere: examples and statistics. Geophys. Res. Lett., 38, L16102, 2011, DOI: 10.1029/1022GL048302. [CrossRef]
  • Kunkel, V., and J. Chen. Evolution of a coronal mass ejection and its magnetic field in interplanetary space. ApJ Lett., 715 (2), L80–L83, 2010, DOI: 10.1088/2041-8205/715/2/L80. [NASA ADS] [CrossRef]
  • Kwon, R.-Y., J. Zhang, and A. Vourlidas. Are halo-like solar coronal mass ejections merely a matter of geometric projection effects? ApJ Lett., 799 (2), L29 (5 pp), 2015, DOI: 10.1088/2041-8205/799/2/L29. [CrossRef]
  • Lario, D., and A. Karelitz. Influence of interplanetary coronal mass ejections on the peak intensity of solar energetic particle events. J. Geophys. Res. [Space Phys.], 119 (6), 4185–4209, 2014, DOI: 10.1002/2014JA019771. [CrossRef]
  • Lee, C.O., C.N. Arge, D. Odstrčil, G. Millward, V. Pizzo, J.M. Quinn, and C.J. Henney. Ensemble modeling of CME propagation. Sol. Phys., 285, 349–368, 2013, DOI: 10.1007/s11207-012-9980-1. [NASA ADS] [CrossRef]
  • Liu, H.-L., W. Wang, A.D. Richmond, and R.G. Roble. Ionospheric variability due to planetary waves and tides for solar minimum conditions. J. Geophys. Res. [Space Phys.], 115, A00G01, 2010, DOI: 10.1029/2009JA015188.
  • Lu, G., M. Hagan, K. Häusler, E. Doornbos, S. Bruinsma, B.J. Anderson, and H. Korth. Global ionospheric and thermospheric response to the 5 April 2010 geomagnetic storm: an integrated data-model investigation. J. Geophys. Res. [Space Phys.], 119, 10358–10375, 2015, DOI: 10.1002/2014JA020555. [CrossRef]
  • Lugaz, N., W.B.I. Manchester, and T.I. Gombosi. Numerical simulation of the interaction of two coronal mass ejections from Sun to Earth. ApJ, 634 (1), 651–662, 2005, DOI: 10.1086/491782. [NASA ADS] [CrossRef]
  • Lühr, H., M. Rother, K. Häusler, P. Alken, and S. Maus. The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet. J. Geophys. Res. [Space Phys.], 113, A08313, 2008, DOI: 10.1029/2008JA01.
  • Lynch, E., D. Kaufman, A.S. Sharma, E. Kalnay, and K. Ide. Brief Communication: breeding vectors in the phase space reconstructed from time series data. Nonlin. Proc. Geophys., 23 (3), 137–141, 2016, DOI: 10.5194/npg-23-137-2016. [CrossRef]
  • Mannucci, A.J. Charting a path toward improved space weather forecasting. Space Weather, 10, S07003, 2012, DOI: 10.1029/2012SW000819. [CrossRef]
  • Mannucci, A.J., B.T. Tsurutani, M.A. Abdu, W.D. Gonzalez, A. Komjathy, E. Echer, B.A. Iijima, G. Crowley, and D. Anderson. Superposed epoch analysis of the dayside ionospheric response to four intense geomagnetic storms. J. Geophys. Res. [Space Phys.], 113, A00A02, 2008, DOI: 10.1029/2007JA012732. [CrossRef]
  • Mannucci, A.J., B.T. Tsurutani, M.C. Kelley, B.A. Iijima, and A. Komjathy. Local time dependence of the prompt ionospheric response for the 7, 9, and 10 November 2004 superstorms. J. Geophys. Res. [Space Phys.], 114, A10308, 2009, DOI: 10.1029/2009JA014043. [CrossRef]
  • Mannucci, A.J., O.P. Verkhoglyadova, B.T. Tsurutani, X. Meng, X. Pi, et al. Medium-range thermosphere-ionosphere storm forecasts. Space Weather, 13 (3), 125–129, 2015a, DOI: 10.1002/2014sw001125. [CrossRef]
  • Mannucci, A.J., B.T. Tsurutani, O.P. Verkhoglyadova, and X. Meng. On scientific inference in geophysics and the use of numerical simulations for scientific investigations. Earth Space Sci., 2 (8), 359–367, 2015b, DOI: 10.1002/2015EA000108. [CrossRef]
  • Matsuo, T., and A.D. Richmond. Effects of high-latitude ionospheric electric field variability on global thermospheric Joule heating and mechanical energy transfer rate. J Geophys. Res. [Space Phys.], 113 (A7), A07309, 2008, DOI: 10.1029/2007ja012993. [CrossRef]
  • Maute, A., M.E. Hagan, A.D. Richmond, and R.G. Roble. TIME-GCM study of the ionospheric equatorial vertical drift changes during the 2006 Stratospheric Sudden Warming. J. Geophys. Res. [Space Phys.], 119, 1287–1305, 2014, DOI: 10.1002/2013JA019490. [CrossRef]
  • Maute, A., M.E. Hagan, V. Yudin, H.-L. Liu, and E. Yizengaw. Causes of the longitudinal differences in the equatorial vertical E × B drift during the 2013 SSW period as simulated by the TIME-GCM. J. Geophys. Res. [Space Phys.], 120, 5117–5136, 2015, DOI: 10.1002/2015JA021126. [CrossRef]
  • Mendillo, M. Storms in the ionosphere: patterns and processes for total electron content. Rev. Geophys., 44, RG4001, 2006, DOI: 10.1029/2005RG000193. [CrossRef]
  • Mendillo, M., and J.A. Klobuchar. Total electron content: synthesis of past storm studies and needed future work. Radio Sci., 41, RS5S02, 2006, DOI: 10.1029/2005RS003394. [CrossRef]
  • Meng, X., A.J. Mannucci, O.P. Verkhoglyadova, and B.T. Tsurutani. On forecasting ionospheric total electron content responses to high-speed solar wind streams. J. Space Weather Space Clim., 6, A19, 2016, DOI: 10.1051/swsc/2016014. [CrossRef] [EDP Sciences]
  • Merkin, V.G., M.J. Owens, H.E. Spence, W.J. Hughes, and J.M. Quinn. Predicting magnetospheric dynamics with a coupled Sun-to-Earth model: challenges and first results. Space Weather, 5, S12001, 2007, DOI: 10.1029/2007sw000335. [CrossRef]
  • Millward, G., D. Biesecker, V. Pizzo, and C.A. de Koning. An operational software tool for the analysis of coronagraph images: determining CME parameters for input into the WSA-Enlil heliospheric model. Space Weather, 11, 57–68, 2013, DOI: 10.1002/swe.20024. [CrossRef]
  • Möstl, C., K. Amla, J.R. Hall, P.C. Liewer, E.M. De Jong, et al. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU. ApJ, 787 (2), 119, 2014, DOI: 10.1088/0004-637X/787/2/119. [CrossRef]
  • Newell, P.T., T. Sotirelis, K. Liou, C.-I. Meng, and F.J. Rich. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. [Space Phys.], 112, A01206, 2007, DOI: 10.1029/2006JA012015.
  • Newell, P.T., T. Sotirelis, K. Liou, and F.J. Rich. Pairs of solar wind-magnetosphere coupling functions: combining a merging term with a viscous term works best. J. Geophys. Res. [Space Phys.], 113, A04218, 2008, DOI: 10.1029/2007JA012825. [CrossRef]
  • Nieves-Chinchilla, T., R. Colaninno, A. Vourlidas, A. Szabo, R.P. Lepping, S.A. Boardsen, B.J. Anderson, and H. Korth. Remote and in situ observations of an unusual earth-directed coronal mass ejection from multiple viewpoints. J. Geophys. Res., 117, A06106, 2012, DOI: 10.1029/2011JA017243. [CrossRef]
  • Oberheide, J., and J.M. Forbes. Tidal propagation of deep tropical cloud signatures into the thermosphere from TIMED observations. Geophys. Res. Lett., 35, L04816, 2008, DOI: 10.1029/2007GL032397.
  • Oberheide, J., J.M. Forbes, K. Häusler, Q. Wu, and S.L. Bruinsma. Tropospheric tides from 80 to 400 km: Propagation, interannual variability, and solar cycle effects. J. Geophys. Res., 114, D00I05, 2009, DOI: 10.1029/2009JD0. [CrossRef]
  • OFCM. “The National Space Weather Program Strategic Plan”, National Space Weather Program Council, Office of the Federal Coordinator for Meteorological Services and Supporting Research, Document FCM-P30-2010, Washington, DC, 2010
  • Patsourakos, S., A. Vourlidas, and G. Stenborg. Direct evidence for a fast coronal mass ejection driven by the prior formation and subsequent destabilization of a magnetic flux rope. ApJ, 764, 125, 2013, DOI: 10.1088/0004-637X/764/2/125. [NASA ADS] [CrossRef]
  • Pedatella, N.M., M.E. Hagan, and A. Maute. The comparative importance of DE3, SE2, and SPW4 on the generation of wavenumber-4 longitude structures in the low-latitude ionosphere during September equinox. Geophys. Res. Lett., 39, L19108, 2012, DOI: 10.1029/2012GL053643.
  • Poomvises, W., J. Zhang, and O. Olmedo. Coronal mass ejection propagation and expansion in three-dimensional space in the heliosphere based on STEREO/SECCHI observations. ApJ Lett., 717, L159–L163, 2010, DOI: 10.1088/2041-8205/717/2/L159. [NASA ADS] [CrossRef]
  • Prölss, G.W., Ionospheric F-region storms. In: H., Volland, Editor. Handbook of Atmospheric Electrodynamics, vol. 2, CRC Press, Boca Raton, FL, 195–235, 1995.
  • Prölss, G.W., Ionospheric storms at mid-latitude: A short review. In: M. Paul KintnerJr., J. Anthea Coster, T. Fuller-Rowell, J. Anthony Mannucci, M. Mendillo, and R. Heelis, Editors. Midlatitude Ionospheric Dynamics and Disturbances, Geophys. Monogr. Ser. 181, AGU Geophysical Monograph Series, vol. 181, AGU, Washington, DC, 9–24, ISBN: 978-0-87590-446-7, 2008, DOI: 10.1029/181GM03. [CrossRef]
  • Richmond, A.D., and Y. Kamide. Mapping electrodynamic features of the high-latitude ionosphere from localized observations: technique. J. Geophys. Res. [Space Phys.], 93 (A6), 5741–5759, 1988, DOI: 10.1029/JA093iA06p05741. [CrossRef]
  • Ridley, A.J., Y. Deng, and G. Tóth. The global ionosphere-thermosphere model. J. Atmos. Sol. Terr. Phys., 68, 839–864, 2006, DOI: 10.1016/j.jastp.2006.01.008. [CrossRef]
  • Rienecker, M.M., M.J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim., 24 (14), 3624–3648, 2011, DOI: 10.1175/JCLI-D-11-00015.1. [CrossRef]
  • Rouillard, A.P., N.P. Savani, J.A. Davies, B. Lavraud, R.J. Forsyth, et al. A multispacecraft analysis of a small-scale transient entrained by solar wind streams. Sol. Phys, 256 (1), 307–326, 2009, DOI: 10.1007/s11207-009-9329-6. [CrossRef]
  • Savani, N.P., A. Vourlidas, A. Szabo, M.L. Mays, I.G. Richardson, B.J. Thompson, A. Pulkkinen, R. Evans, and T. Nieves-Chinchilla. Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture. Space Weather, 13 (6), 374–385, 2015, DOI: 10.1002/2015SW001171. [NASA ADS] [CrossRef]
  • Sheng, C., Y. Deng, X. Yue, and Y. Huang. Height-integrated Pedersen conductivity in both E and F regions from COSMIC observations. J. Atmos. Sol. Terr. Phys., 115–116C, 79–86, 2014, DOI: 10.1016/j.jastp.2013.12.013. [CrossRef]
  • Siscoe, G. A culture of improving forecasts: lessons from Meteorology. Space Weather, 4, S01003, 2006, DOI: 10.1029/2005SW000178.
  • Siscoe, G., and S.C. Solomon. Aspects of data assimilation peculiar to space weather forecasting. Space Weather, 4 (4), S04002, 2006, DOI: 10.1029/2005SW000205.
  • Solomon, S.C., A.G. Burns, B.A. Emery, M.G. Mlynczak, L. Qian, W. Wang, D.R. Weimer, and M. Wiltberger. Modeling studies of the impact of high-speed streams and co-rotating interaction regions on the thermosphere-ionosphere. J. Geophys. Res. [Space Phys.], 117, A00L11, 2012, DOI: 10.1029/2011JA017417. [CrossRef]
  • Temmer, M., and N.V. Nitta. Interplanetary propagation behavior of the fast coronal mass ejection on 23 July 2012. Sol. Phys., 290 (3), 919–932, 2015, DOI: 10.1007/s11207-014-0642-3. [CrossRef]
  • Tóth, G., D.L. De Zeeuw, T.I. Gombosi, W.B. Manchester, A.J. Ridley, I.V. Sokolov, and I.I. Roussev. Sun-to-thermosphere simulation of the 28–30 October 2003 storm with the space weather modeling framework. Space Weather, 5 (6), S06003, 2007, DOI: 10.1029/2006sw000272.
  • Tsurutani, B.T., W.D. Gonzalez, A.L.C. Gonzalez, F. Tang, J.K. Arballo, and M. Okada. Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J Geophys. Res. [Space. Phys.], 100 (A11), 21717–21734, 1995, DOI: 10.1029/95JA01476. [NASA ADS] [CrossRef]
  • Verkhoglyadova, O., X. Meng, A.J. Mannucci, B.T. Tsurutani, L.A. Hunt, M.G. Mlynczak, R. Hajra, and B.A. Emery. Estimation of energy budget of ionosphere-thermosphere system during two CIR-HSS events: observations and modeling. J. Space Weather Space Clim., 6, A20–A22, 2016, DOI: 10.1051/swsc/2016013. [CrossRef] [EDP Sciences]
  • Vourlidas, A. Mission to the Sun-Earth L5 Lagrangian point: an optimal platform for space weather research. Space Weather, 13, 197–201, 2015, DOI: 10.1002/2015SW001173. [CrossRef]
  • Vourlidas, A., R. Colaninno, T. Nieves-Chinchilla, and G. Stenborg. The first observation of a rapidly rotating coronal mass ejection in the middle corona. ApJ 733 (2), L23, 2011, DOI: 10.1088/2041-8205/733/2/L23. [CrossRef]
  • Vourlidas, A., B.J. Lynch, R.A. Howard, and Y. Li. How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Sol. Phys., 284, 179–201, 2013, DOI: 10.1007/s11207-012-0084-8.
  • Wan, W., J. Xiong, Z. Ren, L. Liu, M.L. Zhang, F. Ding, B. Ning, B. Zhao, and X. Yue. Correlation between the ionospheric WN4 signature and the upper atmospheric DE3 tide. J. Geophys. Res. [Space Phys.], 115, A11303, 2010, DOI: 10.1029/2010JA015527.
  • Wang, C., G. Rosen, B.T. Tsurutani, O.P. Verkhoglyadova, X. Meng, and A.J. Mannucci. Statistical characterization of ionosphere anomalies and their relationship to space weather events. J. Space Weather Space Clim., 6, A5, 2016, DOI: 10.1051/swsc/2015046. [CrossRef] [EDP Sciences]
  • Webb, D.F., D.A. Biesecker, N. Gopalswamy, O.C. St. Cyr, J.M. Davila, C.J. Eyles, B.J. Thompson, K.D.C. Simunac, and J.C. Johnston. Using STEREO-B as an L5 Space Weather Pathfinder Mission. Space Res. Today, 178, 10–16, 2010, DOI: 10.1016/ [CrossRef]
  • Zhang, Y., and L.J. Paxton. An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data. J. Atmos. Sol. Terr. Phys., 70 (8–9), 1231–1242, 2008, DOI: 10.1016/j.jastp.2008.03.008. [CrossRef]
  • Zhang, J., C. Xin, and Ming-de Ding. Observation of an evolving magnetic flux rope before and during a solar eruption. Nat. Comm., 3, 747, 2012, DOI: 10.1038/ncomms1753. [NASA ADS] [CrossRef]
  • Zhao, X., and M. Dryer. Current status of CME/shock arrival time prediction. Space Weather, 12 (7), 448–469, 2014, DOI: 10.1002/2014SW001060. [CrossRef]
  • Zheng, Y., P. Macneice, D. Odstrcil, M.L. Mays, L. Rastaetter, et al. Forecasting propagation and evolution of CMEs in an operational setting: What has been learned. Space Weather, 11 (10), 557–574, 2013, DOI: 10.1002/swe.20096. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.