Issue |
J. Space Weather Space Clim.
Volume 7, 2017
Measurement, Specification and Forecasting of the Solar Energetic Particle Environment and GLEs
|
|
---|---|---|
Article Number | A14 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/swsc/2017013 | |
Published online | 09 June 2017 |
Research Article
Catalogue of 55–80 MeV solar proton events extending through solar cycles 23 and 24
1
Department of Physics and Astronomy, University of Turku, 20014, Finland
2
Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS), National Observatory of Athens, I. Metaxa & Vas. Pavlou St. GR-15236
Penteli, Greece
3
Royal Belgian Institute for Space Aeronomy, Avenue Circulaire 3, 1180
Uccle, Belgium
4
Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24118
Kiel, Germany
5
LESIA, Observatoire de Paris, Section de Meudon, 5 place Jules Janssen, 92195
Meudon Cedex, France
* Corresponding author: mimapa@utu.fi
Received:
31
January
2017
Accepted:
16
May
2017
We present a new catalogue of solar energetic particle events near the Earth, covering solar cycle 23 and the majority of solar cycle 24 (1996–2016), based on the 55–80 MeV proton intensity data gathered by the Solar and Heliospheric Observatory/the Energetic and Relativistic Nuclei and Electron experiment (SOHO/ERNE). In addition to ERNE proton and heavy ion observations, data from the Advanced Composition Explorer/Electron, Proton and Alpha Monitor (ACE/EPAM) (near-relativistic electrons), SOHO/EPHIN (Electron Proton Helium Instrument) (relativistic electrons), SOHO/LASCO (Large Angle and Spectrometric Coronagraph) (coronal mass ejections, CMEs) and Geostationary Operational Environmental Satellite (GOES) soft X-ray experiments are also considered and the associations between the particle and CME/X-ray events deduced to obtain a better understanding of each event. A total of 176 solar energetic particle (SEP) events have been identified as having occurred during the time period of interest; their onset and solar release times have been estimated using both velocity dispersion analysis (VDA) and time-shifting analysis (TSA) for protons, as well as TSA for near-relativistic electrons. Additionally, a brief statistical analysis was performed on the VDA and TSA results, as well as the X-rays and CMEs associated with the proton/electron events, both to test the viability of the VDA and to investigate possible differences between the two solar cycles. We find, in confirmation of a number of previous studies, that VDA results for protons that yield an apparent path length of 1 AU < s ≾ 3 AU seem to be useful, but those outside this range are probably unreliable, as evidenced by the anticorrelation between apparent path length and release time estimated from the X-ray activity. It also appears that even the first-arriving energetic protons apparently undergo significant pitch angle scattering in the interplanetary medium, with the resulting apparent path length being on average about twice the length of the spiral magnetic field. The analysis indicates an increase in high-energy SEP events originating from the far-eastern solar hemisphere; for instance, such an event with a well-established associated GOES flare has so far occurred three times during cycle 24 but possibly not at all during cycle 23. The generally lower level of solar activity during cycle 24, as opposed to cycle 23, has probably caused a significant decrease in total ambient pressure in the interplanetary space, leading to a larger proportion of SEP-associated halo-type CMEs. Taken together, these observations point to a qualitative difference between the two solar cycles.
Key words: Solar energetic particles / Space weather / Solar cycles / Solar flares / Coronal mass ejections (CMEs)
© M. Paassilta et al., Published by EDP Sciences 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.