Issue |
J. Space Weather Space Clim.
Volume 14, 2024
Topical Issue - Space Climate: Long-term effects of solar variability on the Earth’s environment
|
|
---|---|---|
Article Number | 9 | |
Number of page(s) | 24 | |
DOI | https://doi.org/10.1051/swsc/2024006 | |
Published online | 12 April 2024 |
Scientific Review
Understanding the secular variability of solar irradiance: the potential of Ca II K observations
1
Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, Göttingen, 37077, Germany
2
INAF Osservatorio Astronomico di Roma, Via Frascati 33, 00078 Monte Porzio Catone, Italy
* Corresponding author: chatzistergos@mps.mpg.de
Received:
30
August
2023
Accepted:
7
March
2024
With the increasing concern about climate change, it is important to have accurate information on the individual contributions by the potential driving agents, solar variability being one of them. Long and reliable records of solar irradiance, which describe the solar radiative energy input into the climate system, are essential for assessing the role of the Sun. The short temporal extent (since the 1970s) of direct space-based irradiance measurements leaves reconstructions of the past variability with the help of models as the only avenue. Such models require information on the surface distribution and evolution of solar magnetic regions, dark sunspots and bright faculae, and network regions. However, such data become increasingly scarce and of diminishing quality further back in time. Prior to the period of direct irradiance measurements, reconstructions mainly rely on sunspot observations or other indirect data to describe facular and network regions. The resulting estimates of the long-term change between the Maunder minimum and the present diverge by about an order of magnitude. Having direct information on bright magnetic regions can help resolve these discrepancies. The by far most promising data for this purpose are the full-disc observations of the Sun in the Ca II K line. Despite the wealth of such data all the way back to 1892, their use up to now has been rather limited, owing to a number of intricacies of the data. Here we review the recent efforts to bring Ca II K datasets to their full potential. We briefly discuss the problems plaguing the data and processing methods that have been developed to account for them before switching to a summary of the products derived from them. Focus is given to reconstructions of total and spectral irradiance variations from Ca II K observations. We summarise the available such reconstructions and discuss various aspects requiring further attention in order to allow Ca II K observations to be used to their full potential and thus eventually more accurate irradiance reconstructions back to 1892.
Key words: Solar variability / Solar activity / Spectral irradiance / Total irradiance
© T. Chatzistergos et al., Published by EDP Sciences 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.