Table 3.

Stellar radiation energy densities derived from four different literature sources derived using equation (5) using the published blackbody temperatures and dilution factors (listed in the table) and converted to flux density using the Stefan-Boltzmann law. Note that various studies adopt different numbering for the blackbody temperatures; here, we adopt a numbering scheme that increases with increasing stellar temperature. For a 5th literature source, we derived the stellar flux density from a reported value of stellar mean radiation intensity (see table comments).

Blackbody temperatures (K) Dilution factors Radiation energy density (J m−3) Flux density (W m−2) Reference Comments
T1 = 3000 W1 = 4 × 10−13 u1 = 2.45 × 10−14 F1 = 1.83 × 10−6 Mathis et al. (1983) (*) We modeled the UV radiation as a blackbody.
T2 = 4000 W2 = 1 × 10−13 u2 = 1.94 × 10−14 F2 = 1.45 × 10−6
T3 = 7500 W3 = 1 × 10−14 u3 = 2.39 × 10−14 F3 = 1.80 × 10−6
(*)For 0.09 < λ < .245 μm = 7.11 × 10−15 FUV = 5.33 × 10−7
Ftotal = 5.62 × 10−6
T1 = 3000 (Y)W1 = 7 × 10−13 u1 = 4.29 × 10−14 F1 = 3.22 × 10−6 Draine (2011) (*) We modeled the UV radiation as a blackbody.
T2 = 4000 W2 = 1.65 × 10−13 u2 = 3.20 × 10−14 F2 = 2.40 × 10−6 (Y)Draine (2011) increased this dilution factor relative to Mathis et al. (1983) to better agree with Cosmic Background Explorer (COBE) Diffuse Infrared Background Experiment (DIRBE) photometry.
T3 = 7500 W3 = 1 × 10−14 (β)u3 = 2.39 × 10−14 F3 = 1.80 × 10−6 (β) Our derived value differs from Draine (2011) (Table 12.1).
(*)For 0.09 < λ <.245 μm = 7.11 × 10−15 FUV = 5.33 × 10−7
Ftotal = 7.94 × 10−6
Mean radiation intensity (for 0.09 < λ < 8 μm) = 1.69 × 10−2 erg s−1 cm−2 (α)u = 5.63 × 10−14 Ftotal = 5.87 × 10−6 Mezger (1990) (α) We converted to J m−2 s−1 and divided by the speed of light to convert to a radiation energy density. We treated the radiation as blackbody.
T1 = 4000 W1 = 1.5 × 10−13 u1 = 2.91 × 10−14 F1 = 2.18 × 10−6 Werner & Salpeter (1969)
T2 = 7500 W2 = 1.5 × 10−14 u2 = 3.60 × 10−14 F2 = 2.7 × 10−6
T3 = 14,500 W3 = 4.0 × 10−16 u3 = 1.34 × 10−14 F3 = 1.0 × 10−6
Ftotal = 5.87 × 10−6
T1 = 10,000 W1 = 1.0 × 10−14 u1 = 7.57 × 10−14 Ftotal = 5.67 × 10−6 Eddington (1926) (as reported in Mezger 1990)

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.