Issue
J. Space Weather Space Clim.
Volume 7, 2017
Brightness Variations of the Sun and Sun-like Stars and Resulting Influences on their Environments
Article Number A10
Number of page(s) 16
DOI https://doi.org/10.1051/swsc/2017007
Published online 20 March 2017
  • Akasofu, S.-I. The auroral oval, the auroral substorm, and their relations with the internal structure of the magnetosphere. Planet. Space Sci., 14, 587–595, 1966. [CrossRef]
  • Akasofu, S.-I. Magnetospheric substorms. Eos Trans. AGU, 59, 68–73, 1978. [CrossRef]
  • Akasofu, S.-I. The relationship between the magnetosphere and magnetospheric/auroral substorms. Ann. Geophys., 31, 387–394, 2013, DOI: 10.5194/angeo-31-387-2013. [CrossRef]
  • Akasofu, S.-I., and Y. Kamide. Meridian chains of magnetometers as a powerful “remote sensing” tool in determining electromagnetic quantities in the ionosphere on a global scale. Eos Trans. AGU, 66 (22), 465–466, 1985, DOI: 10.1029/EO066i022p00465. [CrossRef]
  • Alex, S., S. Mukherjee, and G.S. Lakhina. Geomagnetic signatures during the intense geomagnetic storms of 29 October and 20 November 2003. J. Atmos. Solar Terr. Phys., 68, 769–780, 2006, DOI: 10.1016/j.jastp.2006.01.003. [CrossRef]
  • Allen, C.W. Astrophysical quantities, 3rd edn., Athlone Press, London, 310,1973.
  • Alpher, R.A., and R. Herman. Evolution of the Universe. Nature, 162, 774–775, 1948, DOI: 10.1038/162774b0. [CrossRef]
  • Angelats, M., and J.M. Forbes. Nonlinear interactions in the upper atmosphere: the s = 1 and s = 3 nonmigrating semidiurnal tides. J. Geophys. Res., 107 (A8), 1157, 2002, DOI: 10.1029/2001JA900179.
  • Arai, T., S. Matsuura, J. Bock, A. Cooray, M.G. Kim, et al. Measurements of the mean diffuse galactic light spectrum in the 0.95–1.65 μm band from CIBER. Astrophys. J, 806 (69), 1–14, 2015, DOI: 10.1088/0004-637X/806/1/69. [CrossRef]
  • Baker, D.N., N.E. Turner, and T.I. Pulkkinen. Energy transport and dissipation in the magnetosphere during geomagnetic storms. J. Atmos. Solar Terr. Phys., 63, 421–429, 2001. [CrossRef]
  • Baker, D.N., T.I. Pulkkinen, M. Hesse, and R.L. McPherron. A quantitative assessment of energy storage and release in the Earth’s magnetotail. J. Geophys. Res., 102 (A4), 7159–7168, 1997, DOI: 10.1029/96JA03961. [CrossRef]
  • Bardeen, C.G., O.B. Toon, E.J. Jensen, D.R. Marsh, and V.L. Harvey. Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere. J. Geophys. Res., 113, D17202, 2008, DOI: 10.1029/2007JD009515. [CrossRef]
  • Bazilevskaya, G.A. Observations of variability in cosmic rays. Space Sci. Rev., 94, 25–38, 2000. [CrossRef]
  • Bazilevskaya, G.A., M.B. Krainev, and V.S. Makhmutov. Effects of cosmic rays on the Earth’s environment. J. Atmos. Sol. Terr. Phys., 62, 1577–1586, 2000. [CrossRef]
  • Bazilevskaya, G.A., I.G. Usoskin, E.O. Fluckiger, R.G. Harrison, L. Desorgher, et al. Cosmic ray induced ion production in the atmosphere. Space Sci. Rev., 137, 149–173, 2008. [NASA ADS] [CrossRef]
  • Blasi, P. The origin of galactic cosmic rays. Astron. Astrophys. Rev., 21, 1–87, 2013, DOI: 10.1007/s00159-013-0070-7. [NASA ADS] [CrossRef]
  • Bohren, C.F., and E.E. Clothiaux. Fundamentals of atmospheric radiation, John Wiley & Sons, Inc., Germany, ISBN-10: 3527405039/ISBN-13: 978-3527405039, 2006. [CrossRef]
  • Bone, N. Aurora: observing and recording nature’s spectacular light show, Springer, New York, NY, USA, ISBN: 978-0-387-68469-7, 2007.
  • Boteler, D.H., R.J. Pirjola, and H. Nevanlinna. The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Adv. Space Res., 22 (1), 17–27, 1998. [CrossRef]
  • Brandt, T.D., and B.T. Draine. The spectrum of the diffuse galactic light: the milky way in scattered light. Astrophys. J., 744 (129), 1–13, 2012, DOI: 10.1088/0004-637X/744/2/129. [NASA ADS] [CrossRef]
  • Broadfoot, A.L., D.B. Hatfield, E.R. Anderson, T.C. Stone, B.R. Sandel, J.A. Gardner, E. Murad, D.J. Knecht, C.P. Pike, and R.A. Viereck. N2 triplet band systems and atomic oxygen in the dayglow. J. Geophys. Res., 102 (A6), 11567–11584, 1997, DOI: 10.1029/97JA00771. [NASA ADS] [CrossRef]
  • Broadfoot, A.L., and P.J. Bellaire Jr.. Bridging the gap between ground-based and space-based observations of the night airglow. J. Geophys. Res., 104 (A8), 17127–17138, 1999, DOI: 10.1029/1999JA900135. [CrossRef]
  • Brooks, C.E.P. The distribution of thunderstorms over the globe. Geophys. Mem. London, 24, 147–164, 1925.
  • Brown, P., R.E. Spalding, D.O. ReVelle, E. Tagliaferri, and S.P. Worden. The flux of small near-Earth objects colliding with the Earth. Nature, 420, 294–296, 2002. [NASA ADS] [CrossRef]
  • Brownlee, D.E. Cosmic dust: collection and research. Ann. Rev. Earth Plan. Sci., 13, 147–173, 1985. [NASA ADS] [CrossRef]
  • Bucher, M. CMB observations in 2015: A status report. Nucl Part. Phys. Proc., 267-269, 245–253, 2015, DOI: 10.1016/j.nuclphysbps.2015.10.113. [CrossRef]
  • Cartwright, D.E., and R.D. Ray. Oceanic tides from Geosat altimetry. J. Geophys. Res., 95 (C3), 3069–3090, 1990, DOI: 10.1029/JC095iC03p03069. [CrossRef]
  • Cecil, D.J., D.E. Beuchler, and R.J. Blakeslee. Gridded lightning climatology from TRMM-LIS and OTD: dataset description. Atmos. Res., 135–136, 404–414, 2014, DOI: 10.1016/j.atmosres.2012.06.028. [CrossRef]
  • Ceplecha, Z., J. Borovicka, W.G. Elford, D.O. Revelle, R.L. Hawkes, V. Porubcan, and M. Simek. Meteorphenomena and bodies. Space Sci. Rev., 84, 327–471, 1998. [NASA ADS] [CrossRef]
  • Chamberlain, J.W. Physics of the aurora and airglow, Academic Press, New York, NY, USA, ISBN-10: 1483209105/ISBN-13: 978-1483209104, 1961.
  • Chapman, S., and R.S. Lindzen. Atmospheric tides: thermal and gravitational, Gordon and Breach Science Publishers, New York, NY, USA, ISBN: 978-94-010-3399-2, 1970.
  • Charbonneau, P. Solar dynamo theory. Annu. Rev. Astron. Astrophys., 52, 251–290, 2014, DOI: 10.1146/annurev-astro-081913-040012. [NASA ADS] [CrossRef]
  • Christensen, A.B., J.H. Hecht, R.L. Walterscheid, M.F. Larsen, and W.E. Sharp. Depletion of oxygen in aurora: evidence for a local mechanism. J. Geophys. Res., 102 (A10), 22273–22277, 1997, DOI: 10.1029/97JA01800. [CrossRef]
  • Christensen, A.B., L.J. Paxton, S. Avery, J. Craven, G. Crowley, et al. Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res., 108 (A12), 1451, 2003, DOI: 10.1029/2003JA009918. [CrossRef]
  • Christian, H.J., R.J. Blakeslee, D.J. Boccippio, W.L. Boeck, D.E. Buechler, et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. Atmos., 108, 4005, 2003, DOI: 10.1029/2002JD002347. [CrossRef]
  • Cooray, A. Extragalactic background light measurements and applications. R. Soc. Open. Sci., 3, 1–24, 2016. [CrossRef]
  • Coumans, V., J.-C. Gérard, B. Hubert, S.B. Mende, and S.W.H. Cowley. Morphology and seasonal variations of global auroral proton precipitation observed by IMAGE-FUV. J. Geophys. Res., 109, A12205, 2004, DOI: 10.1029/2003JA010348. [CrossRef]
  • Dai, A., and J. Wang. Diurnal and semidiurnal tides in global surface pressure fields. J. Atmos. Sci., 56, 3874–3891, 1999, DOI: 10.1175/1520-0469(1999)056<3874:DASTIG>2.0.CO;2. [CrossRef]
  • Davies, G.F. Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth. J. Geophys. Res., 85, 2517–2530, 1980a, DOI: 10.1029/JB085iB05p02517. [CrossRef]
  • Davies, G.F. Review of oceanic and global heat flow estimates. Rev. Geophys., 18, 718–722, 1980b, DOI: 10.1029/RG018i003p00718. [CrossRef]
  • Davies, J.H., and D.R. Davies. Earth’s surface heat flux. Solid Earth, 1, 5–24, 2010, DOI: 10.5194/se-1-5-2010. [NASA ADS] [CrossRef]
  • de Bernardis, P. Precision measurements of the cosmic microwave background. Nucl. Part. Phys. Proc., 265–266, 48–51, 2015, DOI: 10.1016/j.nuclphysbps.2015.06.013. [CrossRef]
  • Dessler, A.J., and J.A. Fejer. Interpretation of Kp index and M-region geomagnetic storms. Plan. Space Sci., 11, 505–511, 1963, DOI: 10.1016/0032-0633(63)90074-6. [CrossRef]
  • Draine, B.T. Physics of the Interstellar and Intergalactic Medium, Princeton University Press, Princeton, New Jersey, USA, ISBN-10: 0691122148/ISBN-13: 978-0691122144, 2011.
  • Duprat, J., C. Engrand, M. Maurette, G. Kurat, M. Gounelle, and C. Hammer. Micrometeorites from Central Antarctic snow: the CONCORDIA collection. Adv. Space Res., 39, 605–611, 2007, DOI: 10.1016/j.asr.2006.05.029. [CrossRef]
  • Echer, E., B.T. Tsurutani, F.L. Guarnieri, and J.U. Kozyra. Interplanetary fast forward shocks and their geomagnetic effects: CAWSES events. J. Atmos. Sol. Terr. Phys., 73, 1330–1338, 2011, DOI: 10.1016/j.jastp.2010.09.020. [CrossRef]
  • Edberg, S.J., and D.H. Levy. Observing comets, asteroids, meteors, and the zodiacal light, Cambridge University Press, New York, NY, USA, ISBN-10: 0521066271/ISBN-13: 978-0521066273, 1994.
  • Eddington, A.S. The internal constitution of the stars, Cambridge University Press, Cambridge, ISBN: 9780521337083, 1926.
  • Eddy, J.A. The Sun, the Earth, and near-Earth space, U.S. Government Printing Office, Washington, DC, 2009.
  • Emery, B.A., V. Coumans, D.S. Evans, G.A. Germany, M.S. Greer, E. Holeman, K.K. Cade, F.J. Rich, and W. Xu. Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power. J. Geophys. Res., 113, A0631, , 2008, DOI: 10.1029/2007JA012866. [CrossRef]
  • Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys., 13, 3945–3977, 2013, DOI: 10.5194/acp-13-3945-2013. [NASA ADS] [CrossRef]
  • Feldstein, Y.I., L.A. Dremukhina, A.E. Levitin, U. Mall, I.I. Alexeev, and V.V. Kalegaev. Energetics of the magnetosphere during the magnetic storm. J. Atmos. Solar Terr. Phys., 65, 429–446, 2003, DOI: 10.1016/S1364-6826(02)00339-5. [CrossRef]
  • Fixsen, D.J. The temperature of the cosmic microwave background. Astrophys. J., 707, 916–920, 2009, DOI: 10.1088/0004-637X/707/2/916. [NASA ADS] [CrossRef]
  • Fixsen, D.J., E.S. Cheng, J.M. Gales, J.C. Mather, R.A. Shafer, and E.L. Wright. The cosmic microwave background spectrum from the full COBE/FIRAS data set. Astrophys. J., 473, 576–587, 1996, DOI: 10.1086/178173. [NASA ADS] [CrossRef]
  • Fixsen, D.J., and E. Dwek. The zodiacal emission spectrum as determined by COBE and its implications. Astrophys. J., 578, 1009–1014, 2002, DOI: 10.1086/342658. [NASA ADS] [CrossRef]
  • Floyd, L., G. Rottman, M. DeLand, and J. Pap. 11 years of solar UV irradiance measurements from UARS. In: Wilson, A., Editor. Solar variability as an input to the Earth’s environment. International Solar Cycle Studies (ISCS) Symposium, 23-28 June 2003, Tatranska Lomnica, Slovak Republic, ESA SP-535, ESA Publications Division, Noordwijk, ISBN: 92-9092-845-X, 2003.
  • Flanner, M.G. Integrating anthropogenic heat flux with global climate models. Geophys. Res. Lett., 36, L02801, 2009, DOI: 10.1029/2008GL036465. [CrossRef]
  • Forbes, J.M. Atmospheric tide: 1. Model description and results for the solar diurnal component. J. Geophys. Res., 87 (A7), 5222–5240, 1982a, DOI: 10.1029/JA087iA07p05222. [CrossRef]
  • Forbes, J.M. Atmospheric tide: 2. The solar and lunar semidiurnal components. J. Geophys. Res., 87 (A7), 5241–5252, 1982b, DOI: 10.1029/JA087iA07p05241. [CrossRef]
  • Forbes, J.M., J. Russell, S. Miyahara, X. Zhang, S. Palo, M. Mlynczak, C.J. Mertens, and M.E. Hagan. Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during July–September 2002. J. Geophys. Res., 111, A10S06, 2006, DOI: 10.1029/2005JA011492. [CrossRef]
  • Forbes, J.M., X. Zhang, S. Palo, J. Russell, C.J. Mertens, and M. Mlynczak. Tidal variability in the ionospheric dynamo region. J. Geophys. Res., 113, A02310, 2008, DOI: 10.1029/2007JA012737. [CrossRef]
  • Forbes, J.M., X. Zhang, S. Bruinsma, and J. Oberheide. Lunar semidiurnal tide in the thermosphere under solar minimum conditions. J. Geophys. Res.,118, 1788–1801, 2013, DOI: 10.1029/2012JA017962. [CrossRef]
  • Fowler, C.M.R. The solid Earth: an introduction to global geophysics, Cambridge University Press, New York, NY, USA, ISBN: 9780521893077, 1990.
  • Fraundorf, P. The distribution of temperature maxima for micrometeorites decelerated in the Earth’s atmosphere without melting. Geophys. Res. Lett., 7 (10), 765–768, 1980, DOI: 10.1029/GL007i010p00765. [NASA ADS] [CrossRef]
  • Frey, H.U., S.B. Mende, C.W. Carlson, J.-C. Gérard, B. Hubert, J. Spann, R. Gladstone, and T.J. Immel. The electron and proton aurora as seen by IMAGE-FUV and FAST. Geophys. Res. Lett., 28 (6), 1135–1138, 2001. [CrossRef]
  • Fröhlich, C. Solar irradiance variability since 1978. Space Sci. Rev., 125, 1–13, 2006, DOI: 10.1007/s11214-006-9046-5.
  • Fröhlich, C., and J. Lean. Solar radiative output and its variability: evidence and mechanisms. Astron. Astrophys. Rev., 12, 273–320, 2004, DOI: 10.1007/s00159-004-0024-1. [NASA ADS] [CrossRef]
  • Fuller-Rowell, T.J., and D.S. Evans. Height-integrated pedersen and hall conductivity patterns inferred from the TIROS-NOAA satellite data. J. Geophys. Res., 92 (A7), 7606–7618, 1987, DOI: 10.1029/JA092iA07p07606. [CrossRef]
  • Gando, A., Y. Gando, K. Ichimura, H. Ikeda, K. Inoue, et al. Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nature Geosci., 4, 647–651, 2011, DOI: 10.1038/ngeo1205. [NASA ADS] [CrossRef]
  • Gao, H., J. Xu, and G.-M. Chen. The responses of the nightglow emissions observed by the TIMED/SABER satellite to solar radiation. J. Geophys. Res., 121,1627–1642, 2016, DOI: 10.1002/2015JA021624. [CrossRef]
  • Gattinger, R.L., A. Vallance Jones, D.A. Degenstein, and E.J. Llewellyn. Quantitative spectroscopy of the aurora. VI. The auroral spectrum from 275 to 815 nm observed by the OSIRIS spectrograph on board the Odin spacecraft. Can. J. Phys., 88, 559–567, 2010, DOI: 10.1139/P10-037. [CrossRef]
  • Gattinger, R.L., N.D. Lloyd, A.E. Bourassa, D.A. Degenstein, I.C. McDade, and E.J. Llewellyn. Observation of the 557.7 nm to 297.2 nm brightness ratio in the auroral spectrum with OSIRIS on Odin. Can. J. Phys., 87, 1133–1137, 2009, DOI: 10.1139/P09-102. [CrossRef]
  • Germany, G.A., G.K. Parks, M. Brittnacher, J. Cumnock, D. Lummerzheim, J.F. Spann, L. Chen, P.G. Richards, and F.J. Rich. Remote determination of auroral energy characteristics during substorm activity. Geophys. Res. Lett., 24 (8), 995–998, 1997, DOI: 10.1029/97GL00864. [CrossRef]
  • Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, and V.M. Vasyliunas. What is a geomagnetic storm? J. Geophys. Res., 99 (A4), 5771–5792, 1994, DOI: 10.1029/93JA02867. [NASA ADS] [CrossRef]
  • Gonzalo, J.A. The intelligible universe: an overview of the last thirteen billion years, World Scientific Publishing, 2nd edn., Hackensack, NJ, USA, ISBN-13: 978-9812794116, 2008. [CrossRef]
  • Goode, P.R., J. Qiu, V. Yurchyshyn, J. Hickey, M. Chu, E. Kolbe, C.T. Brown, and S.E. Koonin. Earthshine observations of the Earth’s reflectance. Geophys. Res. Lett., 28 (9), 1671–1674, 2001, DOI: 10.1029/2000GL012580. [NASA ADS] [CrossRef]
  • Gosling, J.T., D.J. McComas, J.L. Phillips, and S.J. Bame. Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res., 96 (A5), 7831–7839, 1991, DOI: 10.1029/91JA00316. [NASA ADS] [CrossRef]
  • Gosling, J.T., and R.J. Forsyth. CME-driven solar wind disturbances at high heliographic latitudes. Space Sci. Rev., 97, 87–98, 2001, DOI: 10.1023/A:1011874027259 [CrossRef]
  • Gray, L.J., J. Beer, M. Geller, J.D. Haigh, M. Lockwood, et al. Solar influences on climate. Rev. Geophys., 48, RG4001, 2010, DOI: 10.1029/2009RG000282. [NASA ADS] [CrossRef]
  • Groves, G.V., and J.M. Forbes. Equinox tidal heating of the upper atmosphere. Planet. Space Sci., 32, 447–456, 1984, DOI: 10.1016/0032-0633(84)90124-7. [CrossRef]
  • Grün, E., H.A. Zook, H. Fechtig, and R.H. Giese. Collisional balance of the meteoric complex. Icarus, 62, 244–272, 1983, DOI: 10.1016/0019-1035(85)90121-6. [NASA ADS] [CrossRef]
  • Grün, E., and V. Dikarev. Interplanetary dust, Springer, Berlin, Heidelberg, Germany, 501–536, 2009, DOI: 10.1007/978-3-540-88055-4_32.
  • Guo, J., X. Feng, B.A. Emery, J. Zhang, C. Xiang, F. Shen, and W. Song. Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res., 116, A05106, 2011, DOI: 10.1029/2011JA016490. [CrossRef]
  • Hagan, M.E., A. Maute, and R.G. Roble. Tropospheric tidal effects on the middle and upper atmosphere. J. Geophys. Res., 114, A01302, 2009, DOI: 10.1029/2008JA013637. [CrossRef]
  • Hagan, M.E., and J.M. Forbes. Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., 107, 4754, 2002, DOI: 10.1029/2001JD001236. [CrossRef]
  • Hamza, V.M., R.R. Cardoso, and C.F. Ponte Neto. Spherical harmonic analysis of Earth’s conductive heat flow. Int. J. Earth Sci., 92 (2), 205–226, 2008, DOI: 10.1007/s00531-007-0254-3. [CrossRef]
  • Hanner, M.S., J.L. Weinberg, L.M. DeShields II, B.A. Green, and G.N. Toller. Zodiacal light and the asteroid belt: view from Pioneer-10. J. Geophys. Res., 79 (25), 3671–3675, 1974. [CrossRef]
  • Harder, J., G. Lawrence, J. Fontenla, G. Rottman, and T. Woods. The spectral irradiance monitor: scientific requirements, instrument design, and operation modes. Sol. Phys., 230, 141–167, 2005, DOI: 10.1007/0-387-37625-9_9. [NASA ADS] [CrossRef]
  • Harder, J.W., J.M. Fontenla, P. Pilewskie, E.C. Richard, and T.N. Woods. Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett., 36, L07801, 2009, DOI: 10.1029/2008GL036797. [NASA ADS] [CrossRef]
  • Hardy, D.A., M.S. Gussenhoven, and D. Brautigam. A statistical model of auroral ion precipitation. J. Geophys. Res., 94 (A1), 370–392, 1989, DOI: 10.1029/JA094iA01p00370. [CrossRef]
  • Hardy, D.A., M.S. Gussenhoven, and E. Holeman. A statistical model of auroral electron precipitation. J. Geophys. Res., 90 (A5), 4229–4248, 1985, DOI: 10.1029/JA090iA05p04229. [CrossRef]
  • Haurwitz, B., and D. Cowley. The lunar barometric tide, its global distribution and annual variation. Pure Appl. Geophys., 77, 122–150, 1969, DOI: 10.1007/BF00876008. [CrossRef]
  • Hawkins, G.S. Variation in the occurrence rate of meteors. Astronom. J., 61, 386–391, 1956, DOI: 10.1086/107367. [CrossRef]
  • Hawkins, G.S., and E.K.L. Upton. The influx rate of meteors in the Earth’s atmosphere. Astrophys. J., 128, 727–735, 1958, DOI: 10.1086/146585. [NASA ADS] [CrossRef]
  • Hecht, J.H., D.J. Strickland, and M.G. Conde. The application of ground-based optical techniques for inferring electron energy deposition and composition change during auroral precipitation events. J. Atmos. Solar Terr. Phys., 68, 1502–1519, 2006. [CrossRef]
  • Hecht, J.H., T. Mulligan, D.J. Strickland, A.J. Kocenash, Y. Murayama, et al. Satellite and ground-based observations of auroral energy deposition and the effects on thermospheric composition during large geomagnetic storms: 1. Great geomagnetic storm of 20 November 2003. J. Geophys. Res., 113, A01310, 2008, DOI: 10.1029/2007JA012365. [CrossRef]
  • Hofmeister, A.M., and R.E. Criss. Earth’s heat flux revised and linked to chemistry. Tectonophysics, 395, 159–177, 2005, DOI: 10.1016/j.tecto.2004.09.006. [NASA ADS] [CrossRef]
  • Holton, J.R. An introduction to dynamic meteorology, Elsevier Academic Press, 2nd edn., San Diego, CA, USA, ISBN-10: 012384660/ISBN-13: 860-1407127349, 2004.
  • Hoyt, D.V., and K.H. Schatten. The role of the sun in climate change, Oxford University Press, New York, NY, USA, ISBN: 0-19-509413-1/ISBN: 0-19-509414-X, 1997.
  • Hubert, B., J.-C. Gérard, D.S. Evans, M. Meurant, S.B. Mende, H.U. Frey, and T.J. Immel. Total electron and proton energy input during auroral substorms: remote sensing with IMAGE-FUV. J. Geophys. Res., 107 (A8), 1183, 2002, DOI: 10.1029/2001JA009229. [CrossRef]
  • Ishiguro, M., H. Yang, F. Usui, J. Pyo, M. Ueno, T. Ootsubo, S.M. Kwon, and T. Mukai. High-resolution imaging of the gegenschein and the geometric albedo of interplanetary dust. Astrophys. J., 767 (1), 1–34, 2013, DOI: 10.1088/0004-637x/767/1/75. [CrossRef]
  • Jackman, C.H., D.R. Marsh, F.M. Vitt, R.R. Garcia, C.E. Randall, E.L. Fleming, and S.M. Frith. Long-term middle atmospheric influence on very large solar proton events. J. Geophys. Res., 114, D11304, 2009, DOI: 10.1029/2008JD011415. [CrossRef]
  • Janches, D., C.J. Heinselman, J.L. Chau, A. Chandran, and R. Woodman. Modeling the global micrometeor input function in the upper atmosphere observed by high power and large aperture radars. J. Geophys. Res., 111, A07317, 2006, DOI: 10.1029/2006JA011628.
  • Jaupart, C., S. Labrosse,F. Lucazeau, and J.-C. Mareschal. Temperatures, heat, and energy in the mantle of the earth. Gerald Schubert, Editor-in-cheif. Treatise on geophysics, 2nd edn., vol 7, Elsevier, Oxford, 223–270, 2015. [CrossRef]
  • Kamide, Y., W. Baumjohann, I.A. Daglis, W.D. Gonzalez, M. Grande, et al. Current understanding of magnetic storms: storm-substorm relationships. J. Geophys. Res., 103 (A8), 17705–17728, 1998, DOI: 10.1029/98JA01426. [CrossRef]
  • Kelsall, T., J.L. Weiland, B.A. Franz, W.T. Reach, R.G. Arendt, et al. The COBE diffuse infrared background experiment search for the cosmic infrared background: II. Model of the interplanetary dust cloud. Astrophys. J., 508, 44–73, 1998, DOI: 10.1086/306380. [NASA ADS] [CrossRef]
  • Khomich, V.Y., A.I. Semenov, and N.N. Shefov. Airglow as an indicator of upper atmospheric structure and dynamics, Springer, Berlin, Heidelberg, Germany, ISBN: 978-3-540-75833-4, 2008.
  • Knipp, D.J., B.A. Emery, M. Engebretson, X. Li, A.H. McAllister, et al. An overview of the early November 1993 geomagnetic storm. J. Geophys. Res., 103 (A11), 26197–26220, 1998, DOI: 10.1029/98JA00762. [CrossRef]
  • Kopp, G. An assessment of the solar irradiance record for climate studies. J. Space Weather Space Clim., 4, A14, 2014, DOI: 10.1051/swsc2014012. [NASA ADS] [CrossRef] [EDP Sciences]
  • Kopp, G., and J.L. Lean. A new, lower value of irradiance: evidence and climate significance. Geophys. Res. Lett., 38, L01706, 2011, DOI: 10.1029/2010GL045777. [NASA ADS] [CrossRef]
  • Kotaki, M., and C. Katoh. The global distribution of thunderstorm activity observed by the Ionospheric Sounding Satellite (ISS-b). J. Atmos. Terr. Phys., 45, 843–847, 1983.
  • Krick, J.E., W.J. Glaccum, S.J. Carey, P.J. Lowrance, J.A. Surace, J.G. Ingalls, J.L. Hora, and W.T. Reach. A Spitzer/IRAC measure of the zodiacal light. Astrophys. J., 754, 1–5, 2012, DOI: 10.1088/0004-637X/754/1/53. [NASA ADS] [CrossRef]
  • Laundal, K.M., and N. Østgaard. Asymmetric auroral intensities in the Earth’s Northern and Southern hemispheres. Nature, 460, 491–493, 2009, DOI: 10.1038/nature08154. [CrossRef]
  • Lean, J. The Sun’s variable radiation and its relevance for Earth. Annu. Rev. Astron. Astrophys., 35, 33–67, 1997, DOI: 10.1146/annurev.astro.35.1.33. [NASA ADS] [CrossRef]
  • Leinert, C. Zodiacal light – a measure of the interplanetary environment. Space Sci. Rev., 18, 281–339, 1975, DOI: 10.1007/BF00212910. [CrossRef]
  • Leinert, C., P. Abraham, J. Acosta-Pulido, D. Lemke, and R. Siebenmorgen. Mid-infrared spectrum of the zodiacal light observed with ISOPHOT. A&A, 393, 1073–1079, 2002, DOI: 10.1051/0004-6361:20021029. [NASA ADS] [CrossRef] [EDP Sciences]
  • Leinert, C., S. Bowyer, L.K. Haikala, M.S. Hanner, M.G. Hauser, et al. The 1997 reference of diffuse night sky brightness. Astron. Astrophys. Supp., 127, 1–99, 1998, DOI: 10.1051/aas:1998105. [NASA ADS] [CrossRef] [EDP Sciences]
  • Li, H., C. Wang, W.Y. Xu, and J.R. Kan. Characteristics of magnetospheric energetics during geomagnetic storms. J. Geophys. Res., 117, A04225, 2012, DOI: 10.1029/2012JA017584.
  • Liou, K. Polar Ultraviolet Imager observation of auroral breakup. J. Geophys. Res., 115, A12219, 2010, DOI: 10.1029/2010JA015578. [CrossRef]
  • Liu, X.-C., G.-X. Chen, W.-Y. Xu, A.-M. Du, Y.-Y. Wu, B. Chen, Y. Wang, and X.-D. Zhao. Relationships of the auroral precipitating particle power with AE and Dst indices. Chinese J. Geophys., 51, 686–693, 2008, DOI: 10.1002/cjg2.1260. [CrossRef]
  • Lopez, R.E., J.G. Lyon, E. Mitchell, R. Bruntz, V.G. Merkin, S. Brogl, F. Toffoletto, and M. Wiltberger. Why doesn’t the ring current injection rate saturate? J. Geophys. Res., 114, A02204, 2009, DOI: 10.1029/2008JA013141. [CrossRef]
  • Love, S.G., and D.E. Brownlee. Heating and thermal transformation of micrometeoroids entering the Earth’s atmosphere. Icarus, 89, 26–43, 1991, DOI: 10.1016/0019-1035(91)90085-8. [NASA ADS] [CrossRef]
  • Love, S.G., and D.E. Brownlee. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science, 262, 550–553, 1993, DOI: 10.1126/science.262.5133.550. [NASA ADS] [CrossRef] [PubMed]
  • Lu, G., A.D. Richmond, B.A. Emery, and R.G. Roble. Magnetosphere-ionosphere-thermosphere coupling: effect of neutral winds on energy transfer and field-aligned current. J. Geophys. Res., 100 (A10), 19643–19659, 1995, DOI: 10.1029/95JA00766. [CrossRef]
  • Lu, G., D.N. Baker, R.L. McPherron, C.J. Farrugia, D. Lummerzheim, et al. Global energy deposition during the January 1997 magnetic cloud event. J. Geophys. Res., 103 (A6), 11685–11694, 1998, DOI: 10.1029/98JA00897. [NASA ADS] [CrossRef]
  • Luan, X., W. Wang, A. Burns, S. Solomon, Y. Zhang, and L.J. Paxton. Seasonal and hemispheric variations of the total auroral precipitation energy flux from TIMED/GUVI. J. Geophys. Res., 115, A11304, 2010, DOI: 10.1029/2009JA015063. [CrossRef]
  • MacGorman, D.R., and W.D. Rust. The electrical nature of storms, Oxford University Press, New York, NY, USA, ISBN-10: 0195073371/ISBN-13: 978-0195073379, 1998.
  • Mackerras, D., M. Darveniza, R.E. Orville, E.R. Williams, and S.J. Goodman. Global lightning: total, cloud and ground flash estimates. J. Geophys. Res., 103 (D16), 19791–19809, 1998, DOI: 10.1029/98JD01461. [CrossRef]
  • Mathis, J.S., P.G. Mezger, and N. Panagia. Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds. A&A, 128 (1), 212–229, 1983.
  • Matthews, G. Celestial body irradiance determination from an underfilled satellite radiometer: application to albedo and thermal emission measurements of the Moon using CERES. Appl. Opt., 47, 4981–4993, 2008, DOI: 10.1364/AO.47.004981. [CrossRef]
  • Mathews, J.D., D. Janches, D.D. Meisel, and Q.-H. Zhou. The micrometeoroid mass flux into the upper atmosphere: arecibo results and a comparison with prior estimates. Geophys. Res. Lett., 28 (10), 1929–1932, 2001, DOI: 10.1029/2000GL012621. [NASA ADS] [CrossRef]
  • Maurette, M. Micrometeorites and the mysteries of our origins, Springer, Berlin, Heidelberg, Germany, ISBN: 978-3-540-25816-2, 2006. [CrossRef]
  • McLandress, C. The seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere. Part I: the role of gravity waves and planetary waves. J. Atmos. Sci., 59 (5), 893–906, 2002. [CrossRef]
  • McLandress, C., and W.E. Ward. Tidal/gravity wave interactions and their influence on the large-scale dynamics of the middle atmosphere: model results. J. Geophys. Res., 99 (D4), 8139–8155, 1994. DOI: 10.1029/94JD00486. [CrossRef]
  • Meier, R.R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci. Rev., 58, 1–185, 1991, DOI: 10.1007/BF01206000. [CrossRef]
  • Meinel, A.B. The spectrum of the airglow and the aurora. Rep. Prog. Phys., 14, 121–146, 1951, DOI: 10.1088/0034-4885/14/1/305. [CrossRef]
  • Mezger, P.G. The interstellar radiation field and its interaction with the interstellar matter. In: Galactic and extragalactic background radiation, A92-24276, Kluwer Academic Publishers, Dordrecht, The Netherlands, 63–73, 1990. [CrossRef]
  • Mironova, I.A., K.L. Aplin, F. Arnold, G.A. Bazilevskaya, R.G. Harrison, A.A. Krivolutsky, K.A. Nicoll, E.V. Rozanov, E. Turunen, and I.G. Usoskin. Energetic particle influence on the earth’s atmosphere. Space Sci. Rev., 194, 1–96, 2015, DOI: 10.1007/s11214-015-0185-4. [CrossRef]
  • Miyashita, Y., Y. Miyoshi, Y. Matsumoto, A. Ieda, Y. Kamide, et al. Geotail observations of signatures in the near-Earth magnetotail for the extremely intense substorms of the 30 October 2003 storm. J. Geophys. Res., 110, A09S25, 2005, DOI: 10.1029/2005JA011070. [CrossRef]
  • Mlynczak, M.G. Energetics of the mesosphere and lower thermosphere and the SABER experiment. Adv. Space Res., 20 (6), 1177–1183, 1997, DOI: 10.1016/S0273-1177(97)00769-2. [CrossRef]
  • Murcray, F.H. The spectral dependence of lunar emissivity. J. Geophys. Res., 70, 4959–4962, 1965, DOI: 10.1029/JZ070i019p04959. [CrossRef]
  • Murcray, F.H., D.G. Murcray, and W.J. Williams. Infrared emissivity of lunar surface features 1. Balloon-borne observations. J. Geophys. Res., 75 (14), 2662–2669, 1970, DOI: 10.1029/JB075i014p02662. [CrossRef]
  • Newell, P.T., K. Liou, T. Sortirelis, and C.-I. Meng. Auroral precipitation power during substorms: a Polar UV Imager-based superposed epoch analysis. J. Geophys. Res., 106 (A12), 28885–28896, 2001, DOI: 10.1029/2000JA000428. [CrossRef]
  • Newell, P.T., T. Sotirelis, and S. Wing. Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J. Geophys. Res., 114, A09207, 2009, DOI: 10.1029/2009JA014326. [CrossRef]
  • Ngwira, C.M., A. Pulkkinen, M.L. Mays, M.M. Kuznetsova, A.B. Galvin, K. Simunac, D.N. Baker, X. Li, Y. Zheng, and A. Glocer. Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was Earth directed? Space Weather, 11, 671–679, 2013, DOI: 10.1002/2013SW000990. [CrossRef]
  • Norton, O.R., and L.A. Chitwood. Field guide to meteors and meteorites, Springer, London, ISBN-10: 1848001568/ISBN-13: 978-1848001565, 2008. [CrossRef]
  • Noterdaeme, P., P. Petitjean, R. Srianand, C. Ledoux, and S. López. The evolution of the cosmic microwave background temperature. A&A, 526 (L7), 1–5, 2011. [NASA ADS] [CrossRef] [EDP Sciences]
  • NRC. Solar Influences on Global Change, National Research Council (U.S.), Committee on Global Change, National Academy Press, Washington, DC, ISBN: 0-309-53812-2, 1994.
  • Oberheide, J., M.E. Hagan, R.G. Roble, and D. Offermann. Sources of nonmigrating tides in the tropical middle atmosphere. J. Geophys. Res., 107 (D21), 4567, 2002, DOI: 10.1029/2002JD002220.
  • Orville, R.E., and D.W. Spencer. Global lightning flash frequency. Mon. Wea. Rev., 107, 934–943, 1979, DOI: 10.1175/1520-0493(1979)107<0934:GLFF>2.0.CO;2. [CrossRef]
  • Oyama, S., K. Shiokawa, J. Kurihara, T.T. Tsuda, S. Nozawa, Y. Ogawa, Y. Otsuka, and B.J. Watkins. Lower-thermospheric wind fluctuations measured with an FPI during pulsating aurora at Tromso Norway. Ann. Geophys., 28, 1847–1857, 2010, DOI: 10.5194/angeo-28-1847-2010. [CrossRef]
  • Palmroth, M., P. Janhunen, T.I. Pulkkinen, and H.E.J. Koskinen. Ionospheric energy input as a function of solar wind parameters: global MHD simulation results. Ann. Geophys., 22, 549–566, 2004. [CrossRef]
  • Penzias, A.A., and R.W. Wilson. A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J., 142, 419–421, 1965, DOI: 10.1086/148307. [NASA ADS] [CrossRef]
  • Pertsev, N., and V. Perminov. Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod Russia. Ann. Geophys., 26, 1049–1056, 2008, DOI: 10.5194/angeo-26-1049-2008. [CrossRef]
  • Pollack, H.N., S.J. Hurter, and J.R. Johnson. Heat flow from the Earth’s interior: analysis of the global dataset. Rev. Geophys., 31 (3), 267–280, 1993, DOI: 10.1029/93RG01249. [NASA ADS] [CrossRef]
  • Plane, J.M.C. Cosmic dust in the earth’s atmosphere. Chem. Soc. Rev., 41, 6507–6518, 2012, DOI: 10.1039/c2cs35132c. [NASA ADS] [CrossRef]
  • Platzman, G.W. An observational study of energy balance in the atmospheric lunar tide. Pure Appl. Geophys., 137, 1–33, 1991, DOI: 10.1007/BF00876887. [CrossRef]
  • Price, C., J. Penner, and M. Prather. NOx from lightning: 1. Global distribution based on lightning physics. J. Geophys. Res., 102 (D5), 5929–5941, 1997, DOI: 10.1029/96JD03504. [CrossRef]
  • Pulkkinen, T. Space weather: terrestrial perspective. Living Rev. Sol. Phys., 4, 5–60, 2007, DOI: 10.12942/lrsp-2007-1. [CrossRef]
  • Pulkkinen, T.I., N.Y. Ganushkina, E.I. Kallio, G. Lu, D.N. Baker, N.E. Turner, T.A. Fritz, J.F. Fennell, and J. Roeder. Energy dissipation during a geomagnetic storm: May 1998. Adv. Space. Res., 30, 2231–2240, 2002, DOI: 10.1016/S0273-1177(02)80232-0. [CrossRef]
  • Rakov, V.A., and M.A. Uman. Lightning: physics and effects, Cambridge University Press, New York, NY, USA, ISBN-10: 0521035414/ISBN-13: 978-0521035415, 2003. [CrossRef]
  • Reach, W.T., P. Morris, F. Boulanger, and K. Okumura. The mid-infrared spectrum of the zodiacal and exozodiacal light. Icarus, 164 (2), 384–403, 2003, DOI: 10.1016/S0019-1035(03)00133-7. [NASA ADS] [CrossRef]
  • Rostoker, G., and S. Skone. Magnetic flux mapping considerations in the auroral oval and the Earth’s magnetotail. J. Geophys. Res., 98 (A2), 1377–1384, 1993, DOI: 10.1029/92JA01838. [CrossRef]
  • Sandford, D.J., H.G. Muller, and N.J. Mitchell. Observations of lunar tides in the mesosphere and lower thermosphere at Arctic and middle latitudes. Atmos. Chem. Phys., 6, 4117–4127, 2006, DOI: 10.5194/acp-6-4117-2006. [CrossRef]
  • Schumann, U., and H. Huntrieser. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys., 7, 3823–3907, 2007, DOI: 10.5194/acp-7-3823-2007. [CrossRef]
  • Sclater, J.G., C. Jaupart, and D. Galson. The heat flow through oceanic and continental crust and the heat loss of the Earth. Rev. Geophys., 18 (1), 269–311, 1980, DOI: 10.1029/RG018i001p00269. [CrossRef]
  • Sellers, W.D. Physical climatology, University of Chicago Press, Chicago, IL, USA, ISBN-10: 0226746992/ISBN-13: 978-0226746999, 1965.
  • Seppälä, A., P.T. Verronen, V.F. Sofieva, J. Tamminen, E. Kyrölä, C.J. Rodger, and M.A. Clilverd. Destruction of the tertiary ozone maximum during a solar proton event. Geophys. Res. Lett., 33, L07804, 2006, DOI: 10.1029/2005GL025571. [CrossRef]
  • Silbergleit, V.M., M.M. Zossi de Artigas, and J.R. Manzano. Energy dissipation in substorms: plasmoids ejection. J. Atmos. Solar Terr. Phys., 59, 1355–1358, 1997, DOI: 10.1016/S1364-6826(96)00108-3. [CrossRef]
  • Slavin, J.A., D.H. Fairfield, M.M. Kuznetsova, C.J. Owen, R.P. Lepping, et al. ISTP observations of plasmoid ejection: IMP 8 and Geotail. J. Geophys. Res., 103 (A1), 119–133, 1998, DOI: 10.1029/97JA02136. [CrossRef]
  • Slinker, S.P., J.A. Fedder, and J.G. Lyon. Plasmoid formation and evolution in a numerical simulation of a substorm. Geophys. Res. Lett., 22 (7), 859–862, 1995, DOI: 10.1029/95GL00300. [CrossRef]
  • Solanki, S.K., N.A. Krivova, and J.D. Haigh. Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys., 51, 311–351, 2013, DOI: 10.1146/annurev-astro-082812-141007. [NASA ADS] [CrossRef]
  • Sparrow, J.G., and E.P. Ney. Discrete light sources observed by satellite OSO-B. Science, 161 (3840), 459–460, 1968, DOI: 10.1126/science.161.3840.459. [CrossRef]
  • Sparrow, J.G., and E.P. Ney. Lightning observations by satellite. Nature, 232, 540–541, 1971, DOI: 10.1038/232540a0. [CrossRef]
  • Stacey, F.D., and P.M. Davis. Physics of the Earth, 4th edn., Cambridge University Press, New York, NY, USA, ISBN-10: 1107394236/ISBN-13: 9781107394230, 2008. [CrossRef]
  • Stanev, T. High energy cosmic rays, Praxis Publishing Ltd, Chichester, UK, ISBN-10: 3540406530/ISBN-13: 978-3540406532, 2004.
  • Stein, C.A., and S. Stein. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123–129, 1992, DOI: 10.1038/359123a0. [CrossRef]
  • Stephens, G.L., J. Li, M. Wild, C.A. Clayson, N. Loeb, S. Kato, T. L’Ecuyer, P.W. Stackhouse Jr., M. Lebsock, and T. Andrews. An update on Earth’s energy balance in light of the latest global observations. Nature Geosci., 5, 691–696, 2012, DOI: 10.1038/ngeo1580. [CrossRef]
  • Stern, D.P. Energetics of the magnetosphere. Space Sci. Rev., 39, 193–213, 1984, DOI: 10.1007/BF00173674. [CrossRef]
  • Tanskanen, E.I., M. Palmroth, T.I. Pulkkinen, H.E.J. Koskinen, P. Janhunen, N. Ostgaard, J.A. Slavin, and K. Liou. Energetics of a substorm on 15 August, 2001: comparing empirical methods and a global MHD simulation. Adv. Space Res., 36 (10), 1825–1829, 2005, DOI: 10.1016/j.asr.2004.05.013. [CrossRef]
  • Tanskanen, E., T.I. Pulkkinen, H.E.J. Koskinen, and J.A. Slavin. Substorm energy budget during low and high solar activity: 1997 and 1999 compared. J. Geophys. Res., 107 (A6), SMP 15-1–SMP 15-11, 2002, DOI: 10.1029/2001JA900153. [CrossRef]
  • Taylor, S., J.H. Lever, and R.P. Harvey. Accretion rate of cosmic spherules measured at the South Pole. Nature, 392, 899–903, 1998, DOI: 10.1038/31894. [CrossRef]
  • Torr, M.R., D.G. Torr, M. Zukic, R.B. Johnson, J. Ajello, et al. A far ultraviolet imager for the international solar-terrestrial physics mission. Space Sci. Rev., 71, 329–383, 1995. [CrossRef]
  • Trenberth, K.E., J.T. Fasullo, and J. Kiehl. Earth’s global energy budget. Bull. Amer. Meteorol. Soc., 90 (3), 311–324, 2009, DOI: 10.1175/2008BAMS2634.1. [NASA ADS] [CrossRef]
  • Tsumura, K., J. Battle, J. Bock, A. Cooray, V. Hristov, et al. Observations of the near-infrared spectrum of the zodiacal light with Ciber. Astrophys. J., 719, 394–402, 2010, DOI: 10.1088/0004-637X/719/1/394. [NASA ADS] [CrossRef]
  • Uman, M.A. The lightning discharge, vol. 39, Academic Press, Orlando, FL, USA, ISBN-10: 0080959814/ISBN-13: 9780080959818, 1987.
  • Usoskin, I.G., S.K. Solanki, and G.A. Kovaltsov. Grand minima and maxima of solar activity: new observational constraints. A&A, 471, 301–309, 2007, DOI: 10.1051/0004-6361:20077704. [NASA ADS] [CrossRef] [EDP Sciences]
  • Vazquez, M., and J.M. Vaquero. Aurorae observed at the Canary Islands. Sol. Phys., 267 (2), 431–444, 2010, DOI: 10.1007/s11207-010-9650-0. [CrossRef]
  • Vial, F., and J.M. Forbes. Monthly simulations of the lunar semi-diurnal tide. J. Atmos. Terr. Phys., 56 (12), 1591–1607, 1994, DOI: 10.1016/0021-9169(94)90089-2. [CrossRef]
  • Wasson, J.T., and F.T. Kyte. Comment on the letter “On the influx of small comets into the Earth’s atmosphere II: interpretation”. Geophys. Res. Lett., 14 (7), 779–780, 1987, DOI: 10.1029/GL014i007p00779. [CrossRef]
  • Weiss, L.A., P.H. Reiff, J.J. Moses, R.A. Heelis, and B.D. Moore. Energy dissipation in substorms, Proceedings of the First International Conference on Substorms, 23–27 March 1992, 309–317, 1992, ESA SP-335.
  • Werner, M.W., and W.E. Salpeter. Grain temperatures in interstellar dust clouds. Mon. Not. R. Astron. Soc., 145, 249–269, 1969. [NASA ADS] [CrossRef]
  • Wild, M., D. Folini, C. Schär, N. Loeb, E.G. Dutton, and G. K-Langlo. The global energy balance from a surface perspective. Clim. Dyn., 40, 3107–3134, 2013, DOI: 10.1007/s00382-012-1569-8. [CrossRef]
  • Williams, D.L., and R.P. Von Herzen. Heat loss from the Earth: new estimate. Geology, 2 (7), 327–328, 1974, DOI: 10.1130/0091-7613(1974)2<327:HLFTEN>2.0.CO;2. [CrossRef]
  • Willson, R.C., and H.S. Hudson. Solar luminosity variations in solar cycle 21. Nature, 332, 810–812, 1988, DOI: 10.1038/332810a0. [NASA ADS] [CrossRef]
  • Willson, R.C., and H.S. Hudson. The Sun’s luminosity over a complete solar cycle. Nature, 351, 42–44, 1991, DOI: 10.1038/351042a0. [NASA ADS] [CrossRef]
  • Wright, E.L. Angular power spectra of the COBE DIRBE maps. Astrophys. J., 496, 1–8, 1998, DOI: 10.1086/305345. [NASA ADS] [CrossRef]
  • Yang, H.G., and M. Ishiguro. Origin of interplanetary dust through optical properties of zodiacal light. Astrophys. J., 813 (2), 1–9, 2015, DOI: 10.1088/0004-637X/813/2/87. [CrossRef]
  • Zhang, X., J.M. Forbes, and M.E. Hagan. Longitudinal variation of tides in the MLT region: 1. Tides driven by tropospheric net radiative heating. J. Geophys. Res., 115, A06316, 2010a, DOI: 10.1029/2009JA014897. [CrossRef]
  • Zhang, X., J.M. Forbes, and M.E. Hagan. Longitudinal variation of tides in the MLT region: 2. Relative effects of solar radiative and latent heating. J. Geophys. Res., 115, A06317, 2010b, DOI: 10.1029/2009JA014898. [CrossRef]
  • Zipser, E.J. Deep cumulonimbus cloud systems in the tropics with and without lightning. Mon. Wea. Rev., 122, 1837–1851, 1994, DOI: 10.1175/1520-0493(1994)122<1837:DCCSIT>2.0.CO;2. [CrossRef]
  • Zirker, J.B. Coronal holes and high-speed wind streams. Rev. Geophys., 15 (3), 257–269, 1977, DOI: 10.1029/RG015i003p00257. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.