Open Access
Review
Issue |
J. Space Weather Space Clim.
Volume 7, 2017
Brightness Variations of the Sun and Sun-like Stars and Resulting Influences on their Environments
|
|
---|---|---|
Article Number | A10 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2017007 | |
Published online | 20 March 2017 |
- Akasofu, S.-I. The auroral oval, the auroral substorm, and their relations with the internal structure of the magnetosphere. Planet. Space Sci., 14, 587–595, 1966. [CrossRef] [Google Scholar]
- Akasofu, S.-I. Magnetospheric substorms. Eos Trans. AGU, 59, 68–73, 1978. [CrossRef] [Google Scholar]
- Akasofu, S.-I. The relationship between the magnetosphere and magnetospheric/auroral substorms. Ann. Geophys., 31, 387–394, 2013, DOI: 10.5194/angeo-31-387-2013. [CrossRef] [Google Scholar]
- Akasofu, S.-I., and Y. Kamide. Meridian chains of magnetometers as a powerful “remote sensing” tool in determining electromagnetic quantities in the ionosphere on a global scale. Eos Trans. AGU, 66 (22), 465–466, 1985, DOI: 10.1029/EO066i022p00465. [CrossRef] [Google Scholar]
- Alex, S., S. Mukherjee, and G.S. Lakhina. Geomagnetic signatures during the intense geomagnetic storms of 29 October and 20 November 2003. J. Atmos. Solar Terr. Phys., 68, 769–780, 2006, DOI: 10.1016/j.jastp.2006.01.003. [CrossRef] [Google Scholar]
- Allen, C.W. Astrophysical quantities, 3rd edn., Athlone Press, London, 310,1973. [Google Scholar]
- Alpher, R.A., and R. Herman. Evolution of the Universe. Nature, 162, 774–775, 1948, DOI: 10.1038/162774b0. [CrossRef] [Google Scholar]
- Angelats, M., and J.M. Forbes. Nonlinear interactions in the upper atmosphere: the s = 1 and s = 3 nonmigrating semidiurnal tides. J. Geophys. Res., 107 (A8), 1157, 2002, DOI: 10.1029/2001JA900179. [Google Scholar]
- Arai, T., S. Matsuura, J. Bock, A. Cooray, M.G. Kim, et al. Measurements of the mean diffuse galactic light spectrum in the 0.95–1.65 μm band from CIBER. Astrophys. J, 806 (69), 1–14, 2015, DOI: 10.1088/0004-637X/806/1/69. [Google Scholar]
- Baker, D.N., N.E. Turner, and T.I. Pulkkinen. Energy transport and dissipation in the magnetosphere during geomagnetic storms. J. Atmos. Solar Terr. Phys., 63, 421–429, 2001. [CrossRef] [Google Scholar]
- Baker, D.N., T.I. Pulkkinen, M. Hesse, and R.L. McPherron. A quantitative assessment of energy storage and release in the Earth’s magnetotail. J. Geophys. Res., 102 (A4), 7159–7168, 1997, DOI: 10.1029/96JA03961. [CrossRef] [Google Scholar]
- Bardeen, C.G., O.B. Toon, E.J. Jensen, D.R. Marsh, and V.L. Harvey. Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere. J. Geophys. Res., 113, D17202, 2008, DOI: 10.1029/2007JD009515. [CrossRef] [Google Scholar]
- Bazilevskaya, G.A. Observations of variability in cosmic rays. Space Sci. Rev., 94, 25–38, 2000. [CrossRef] [Google Scholar]
- Bazilevskaya, G.A., M.B. Krainev, and V.S. Makhmutov. Effects of cosmic rays on the Earth’s environment. J. Atmos. Sol. Terr. Phys., 62, 1577–1586, 2000. [CrossRef] [Google Scholar]
- Bazilevskaya, G.A., I.G. Usoskin, E.O. Fluckiger, R.G. Harrison, L. Desorgher, et al. Cosmic ray induced ion production in the atmosphere. Space Sci. Rev., 137, 149–173, 2008. [Google Scholar]
- Blasi, P. The origin of galactic cosmic rays. Astron. Astrophys. Rev., 21, 1–87, 2013, DOI: 10.1007/s00159-013-0070-7. [Google Scholar]
- Bohren, C.F., and E.E. Clothiaux. Fundamentals of atmospheric radiation, John Wiley & Sons, Inc., Germany, ISBN-10: 3527405039/ISBN-13: 978-3527405039, 2006. [Google Scholar]
- Bone, N. Aurora: observing and recording nature’s spectacular light show, Springer, New York, NY, USA, ISBN: 978-0-387-68469-7, 2007. [Google Scholar]
- Boteler, D.H., R.J. Pirjola, and H. Nevanlinna. The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Adv. Space Res., 22 (1), 17–27, 1998. [Google Scholar]
- Brandt, T.D., and B.T. Draine. The spectrum of the diffuse galactic light: the milky way in scattered light. Astrophys. J., 744 (129), 1–13, 2012, DOI: 10.1088/0004-637X/744/2/129. [Google Scholar]
- Broadfoot, A.L., D.B. Hatfield, E.R. Anderson, T.C. Stone, B.R. Sandel, J.A. Gardner, E. Murad, D.J. Knecht, C.P. Pike, and R.A. Viereck. N2 triplet band systems and atomic oxygen in the dayglow. J. Geophys. Res., 102 (A6), 11567–11584, 1997, DOI: 10.1029/97JA00771. [Google Scholar]
- Broadfoot, A.L., and P.J. Bellaire Jr.. Bridging the gap between ground-based and space-based observations of the night airglow. J. Geophys. Res., 104 (A8), 17127–17138, 1999, DOI: 10.1029/1999JA900135. [CrossRef] [Google Scholar]
- Brooks, C.E.P. The distribution of thunderstorms over the globe. Geophys. Mem. London, 24, 147–164, 1925. [Google Scholar]
- Brown, P., R.E. Spalding, D.O. ReVelle, E. Tagliaferri, and S.P. Worden. The flux of small near-Earth objects colliding with the Earth. Nature, 420, 294–296, 2002. [NASA ADS] [CrossRef] [Google Scholar]
- Brownlee, D.E. Cosmic dust: collection and research. Ann. Rev. Earth Plan. Sci., 13, 147–173, 1985. [Google Scholar]
- Bucher, M. CMB observations in 2015: A status report. Nucl Part. Phys. Proc., 267-269, 245–253, 2015, DOI: 10.1016/j.nuclphysbps.2015.10.113. [CrossRef] [Google Scholar]
- Cartwright, D.E., and R.D. Ray. Oceanic tides from Geosat altimetry. J. Geophys. Res., 95 (C3), 3069–3090, 1990, DOI: 10.1029/JC095iC03p03069. [CrossRef] [Google Scholar]
- Cecil, D.J., D.E. Beuchler, and R.J. Blakeslee. Gridded lightning climatology from TRMM-LIS and OTD: dataset description. Atmos. Res., 135–136, 404–414, 2014, DOI: 10.1016/j.atmosres.2012.06.028. [CrossRef] [Google Scholar]
- Ceplecha, Z., J. Borovicka, W.G. Elford, D.O. Revelle, R.L. Hawkes, V. Porubcan, and M. Simek. Meteorphenomena and bodies. Space Sci. Rev., 84, 327–471, 1998. [NASA ADS] [CrossRef] [Google Scholar]
- Chamberlain, J.W. Physics of the aurora and airglow, Academic Press, New York, NY, USA, ISBN-10: 1483209105/ISBN-13: 978-1483209104, 1961. [Google Scholar]
- Chapman, S., and R.S. Lindzen. Atmospheric tides: thermal and gravitational, Gordon and Breach Science Publishers, New York, NY, USA, ISBN: 978-94-010-3399-2, 1970. [Google Scholar]
- Charbonneau, P. Solar dynamo theory. Annu. Rev. Astron. Astrophys., 52, 251–290, 2014, DOI: 10.1146/annurev-astro-081913-040012. [Google Scholar]
- Christensen, A.B., J.H. Hecht, R.L. Walterscheid, M.F. Larsen, and W.E. Sharp. Depletion of oxygen in aurora: evidence for a local mechanism. J. Geophys. Res., 102 (A10), 22273–22277, 1997, DOI: 10.1029/97JA01800. [CrossRef] [Google Scholar]
- Christensen, A.B., L.J. Paxton, S. Avery, J. Craven, G. Crowley, et al. Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res., 108 (A12), 1451, 2003, DOI: 10.1029/2003JA009918. [Google Scholar]
- Christian, H.J., R.J. Blakeslee, D.J. Boccippio, W.L. Boeck, D.E. Buechler, et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. Atmos., 108, 4005, 2003, DOI: 10.1029/2002JD002347. [CrossRef] [Google Scholar]
- Cooray, A. Extragalactic background light measurements and applications. R. Soc. Open. Sci., 3, 1–24, 2016. [Google Scholar]
- Coumans, V., J.-C. Gérard, B. Hubert, S.B. Mende, and S.W.H. Cowley. Morphology and seasonal variations of global auroral proton precipitation observed by IMAGE-FUV. J. Geophys. Res., 109, A12205, 2004, DOI: 10.1029/2003JA010348. [Google Scholar]
- Dai, A., and J. Wang. Diurnal and semidiurnal tides in global surface pressure fields. J. Atmos. Sci., 56, 3874–3891, 1999, DOI: 10.1175/1520-0469(1999)056<3874:DASTIG>2.0.CO;2. [CrossRef] [Google Scholar]
- Davies, G.F. Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth. J. Geophys. Res., 85, 2517–2530, 1980a, DOI: 10.1029/JB085iB05p02517. [CrossRef] [Google Scholar]
- Davies, G.F. Review of oceanic and global heat flow estimates. Rev. Geophys., 18, 718–722, 1980b, DOI: 10.1029/RG018i003p00718. [CrossRef] [Google Scholar]
- Davies, J.H., and D.R. Davies. Earth’s surface heat flux. Solid Earth, 1, 5–24, 2010, DOI: 10.5194/se-1-5-2010. [NASA ADS] [CrossRef] [Google Scholar]
- de Bernardis, P. Precision measurements of the cosmic microwave background. Nucl. Part. Phys. Proc., 265–266, 48–51, 2015, DOI: 10.1016/j.nuclphysbps.2015.06.013. [CrossRef] [Google Scholar]
- Dessler, A.J., and J.A. Fejer. Interpretation of Kp index and M-region geomagnetic storms. Plan. Space Sci., 11, 505–511, 1963, DOI: 10.1016/0032-0633(63)90074-6. [CrossRef] [Google Scholar]
- Draine, B.T. Physics of the Interstellar and Intergalactic Medium, Princeton University Press, Princeton, New Jersey, USA, ISBN-10: 0691122148/ISBN-13: 978-0691122144, 2011. [Google Scholar]
- Duprat, J., C. Engrand, M. Maurette, G. Kurat, M. Gounelle, and C. Hammer. Micrometeorites from Central Antarctic snow: the CONCORDIA collection. Adv. Space Res., 39, 605–611, 2007, DOI: 10.1016/j.asr.2006.05.029. [NASA ADS] [CrossRef] [Google Scholar]
- Echer, E., B.T. Tsurutani, F.L. Guarnieri, and J.U. Kozyra. Interplanetary fast forward shocks and their geomagnetic effects: CAWSES events. J. Atmos. Sol. Terr. Phys., 73, 1330–1338, 2011, DOI: 10.1016/j.jastp.2010.09.020. [CrossRef] [Google Scholar]
- Edberg, S.J., and D.H. Levy. Observing comets, asteroids, meteors, and the zodiacal light, Cambridge University Press, New York, NY, USA, ISBN-10: 0521066271/ISBN-13: 978-0521066273, 1994. [Google Scholar]
- Eddington, A.S. The internal constitution of the stars, Cambridge University Press, Cambridge, ISBN: 9780521337083, 1926. [Google Scholar]
- Eddy, J.A. The Sun, the Earth, and near-Earth space, U.S. Government Printing Office, Washington, DC, 2009. [Google Scholar]
- Emery, B.A., V. Coumans, D.S. Evans, G.A. Germany, M.S. Greer, E. Holeman, K.K. Cade, F.J. Rich, and W. Xu. Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power. J. Geophys. Res., 113, A0631, , 2008, DOI: 10.1029/2007JA012866. [CrossRef] [Google Scholar]
- Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys., 13, 3945–3977, 2013, DOI: 10.5194/acp-13-3945-2013. [Google Scholar]
- Feldstein, Y.I., L.A. Dremukhina, A.E. Levitin, U. Mall, I.I. Alexeev, and V.V. Kalegaev. Energetics of the magnetosphere during the magnetic storm. J. Atmos. Solar Terr. Phys., 65, 429–446, 2003, DOI: 10.1016/S1364-6826(02)00339-5. [CrossRef] [Google Scholar]
- Fixsen, D.J. The temperature of the cosmic microwave background. Astrophys. J., 707, 916–920, 2009, DOI: 10.1088/0004-637X/707/2/916. [CrossRef] [Google Scholar]
- Fixsen, D.J., E.S. Cheng, J.M. Gales, J.C. Mather, R.A. Shafer, and E.L. Wright. The cosmic microwave background spectrum from the full COBE/FIRAS data set. Astrophys. J., 473, 576–587, 1996, DOI: 10.1086/178173. [Google Scholar]
- Fixsen, D.J., and E. Dwek. The zodiacal emission spectrum as determined by COBE and its implications. Astrophys. J., 578, 1009–1014, 2002, DOI: 10.1086/342658. [Google Scholar]
- Floyd, L., G. Rottman, M. DeLand, and J. Pap. 11 years of solar UV irradiance measurements from UARS. In: Wilson, A., Editor. Solar variability as an input to the Earth’s environment. International Solar Cycle Studies (ISCS) Symposium, 23-28 June 2003, Tatranska Lomnica, Slovak Republic, ESA SP-535, ESA Publications Division, Noordwijk, ISBN: 92-9092-845-X, 2003. [Google Scholar]
- Flanner, M.G. Integrating anthropogenic heat flux with global climate models. Geophys. Res. Lett., 36, L02801, 2009, DOI: 10.1029/2008GL036465. [CrossRef] [Google Scholar]
- Forbes, J.M. Atmospheric tide: 1. Model description and results for the solar diurnal component. J. Geophys. Res., 87 (A7), 5222–5240, 1982a, DOI: 10.1029/JA087iA07p05222. [CrossRef] [Google Scholar]
- Forbes, J.M. Atmospheric tide: 2. The solar and lunar semidiurnal components. J. Geophys. Res., 87 (A7), 5241–5252, 1982b, DOI: 10.1029/JA087iA07p05241. [CrossRef] [Google Scholar]
- Forbes, J.M., J. Russell, S. Miyahara, X. Zhang, S. Palo, M. Mlynczak, C.J. Mertens, and M.E. Hagan. Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during July–September 2002. J. Geophys. Res., 111, A10S06, 2006, DOI: 10.1029/2005JA011492. [CrossRef] [Google Scholar]
- Forbes, J.M., X. Zhang, S. Palo, J. Russell, C.J. Mertens, and M. Mlynczak. Tidal variability in the ionospheric dynamo region. J. Geophys. Res., 113, A02310, 2008, DOI: 10.1029/2007JA012737. [CrossRef] [Google Scholar]
- Forbes, J.M., X. Zhang, S. Bruinsma, and J. Oberheide. Lunar semidiurnal tide in the thermosphere under solar minimum conditions. J. Geophys. Res.,118, 1788–1801, 2013, DOI: 10.1029/2012JA017962. [CrossRef] [Google Scholar]
- Fowler, C.M.R. The solid Earth: an introduction to global geophysics, Cambridge University Press, New York, NY, USA, ISBN: 9780521893077, 1990. [Google Scholar]
- Fraundorf, P. The distribution of temperature maxima for micrometeorites decelerated in the Earth’s atmosphere without melting. Geophys. Res. Lett., 7 (10), 765–768, 1980, DOI: 10.1029/GL007i010p00765. [NASA ADS] [CrossRef] [Google Scholar]
- Frey, H.U., S.B. Mende, C.W. Carlson, J.-C. Gérard, B. Hubert, J. Spann, R. Gladstone, and T.J. Immel. The electron and proton aurora as seen by IMAGE-FUV and FAST. Geophys. Res. Lett., 28 (6), 1135–1138, 2001. [CrossRef] [Google Scholar]
- Fröhlich, C. Solar irradiance variability since 1978. Space Sci. Rev., 125, 1–13, 2006, DOI: 10.1007/s11214-006-9046-5. [Google Scholar]
- Fröhlich, C., and J. Lean. Solar radiative output and its variability: evidence and mechanisms. Astron. Astrophys. Rev., 12, 273–320, 2004, DOI: 10.1007/s00159-004-0024-1. [CrossRef] [Google Scholar]
- Fuller-Rowell, T.J., and D.S. Evans. Height-integrated pedersen and hall conductivity patterns inferred from the TIROS-NOAA satellite data. J. Geophys. Res., 92 (A7), 7606–7618, 1987, DOI: 10.1029/JA092iA07p07606. [Google Scholar]
- Gando, A., Y. Gando, K. Ichimura, H. Ikeda, K. Inoue, et al. Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nature Geosci., 4, 647–651, 2011, DOI: 10.1038/ngeo1205. [Google Scholar]
- Gao, H., J. Xu, and G.-M. Chen. The responses of the nightglow emissions observed by the TIMED/SABER satellite to solar radiation. J. Geophys. Res., 121,1627–1642, 2016, DOI: 10.1002/2015JA021624. [CrossRef] [Google Scholar]
- Gattinger, R.L., A. Vallance Jones, D.A. Degenstein, and E.J. Llewellyn. Quantitative spectroscopy of the aurora. VI. The auroral spectrum from 275 to 815 nm observed by the OSIRIS spectrograph on board the Odin spacecraft. Can. J. Phys., 88, 559–567, 2010, DOI: 10.1139/P10-037. [NASA ADS] [CrossRef] [Google Scholar]
- Gattinger, R.L., N.D. Lloyd, A.E. Bourassa, D.A. Degenstein, I.C. McDade, and E.J. Llewellyn. Observation of the 557.7 nm to 297.2 nm brightness ratio in the auroral spectrum with OSIRIS on Odin. Can. J. Phys., 87, 1133–1137, 2009, DOI: 10.1139/P09-102. [CrossRef] [Google Scholar]
- Germany, G.A., G.K. Parks, M. Brittnacher, J. Cumnock, D. Lummerzheim, J.F. Spann, L. Chen, P.G. Richards, and F.J. Rich. Remote determination of auroral energy characteristics during substorm activity. Geophys. Res. Lett., 24 (8), 995–998, 1997, DOI: 10.1029/97GL00864. [CrossRef] [Google Scholar]
- Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, and V.M. Vasyliunas. What is a geomagnetic storm? J. Geophys. Res., 99 (A4), 5771–5792, 1994, DOI: 10.1029/93JA02867. [Google Scholar]
- Gonzalo, J.A. The intelligible universe: an overview of the last thirteen billion years, World Scientific Publishing, 2nd edn., Hackensack, NJ, USA, ISBN-13: 978-9812794116, 2008. [CrossRef] [Google Scholar]
- Goode, P.R., J. Qiu, V. Yurchyshyn, J. Hickey, M. Chu, E. Kolbe, C.T. Brown, and S.E. Koonin. Earthshine observations of the Earth’s reflectance. Geophys. Res. Lett., 28 (9), 1671–1674, 2001, DOI: 10.1029/2000GL012580. [NASA ADS] [CrossRef] [Google Scholar]
- Gosling, J.T., D.J. McComas, J.L. Phillips, and S.J. Bame. Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res., 96 (A5), 7831–7839, 1991, DOI: 10.1029/91JA00316. [NASA ADS] [CrossRef] [Google Scholar]
- Gosling, J.T., and R.J. Forsyth. CME-driven solar wind disturbances at high heliographic latitudes. Space Sci. Rev., 97, 87–98, 2001, DOI: 10.1023/A:1011874027259 [CrossRef] [Google Scholar]
- Gray, L.J., J. Beer, M. Geller, J.D. Haigh, M. Lockwood, et al. Solar influences on climate. Rev. Geophys., 48, RG4001, 2010, DOI: 10.1029/2009RG000282. [NASA ADS] [CrossRef] [Google Scholar]
- Groves, G.V., and J.M. Forbes. Equinox tidal heating of the upper atmosphere. Planet. Space Sci., 32, 447–456, 1984, DOI: 10.1016/0032-0633(84)90124-7. [CrossRef] [Google Scholar]
- Grün, E., H.A. Zook, H. Fechtig, and R.H. Giese. Collisional balance of the meteoric complex. Icarus, 62, 244–272, 1983, DOI: 10.1016/0019-1035(85)90121-6. [Google Scholar]
- Grün, E., and V. Dikarev. Interplanetary dust, Springer, Berlin, Heidelberg, Germany, 501–536, 2009, DOI: 10.1007/978-3-540-88055-4_32. [Google Scholar]
- Guo, J., X. Feng, B.A. Emery, J. Zhang, C. Xiang, F. Shen, and W. Song. Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res., 116, A05106, 2011, DOI: 10.1029/2011JA016490. [CrossRef] [Google Scholar]
- Hagan, M.E., A. Maute, and R.G. Roble. Tropospheric tidal effects on the middle and upper atmosphere. J. Geophys. Res., 114, A01302, 2009, DOI: 10.1029/2008JA013637. [CrossRef] [Google Scholar]
- Hagan, M.E., and J.M. Forbes. Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., 107, 4754, 2002, DOI: 10.1029/2001JD001236. [CrossRef] [Google Scholar]
- Hamza, V.M., R.R. Cardoso, and C.F. Ponte Neto. Spherical harmonic analysis of Earth’s conductive heat flow. Int. J. Earth Sci., 92 (2), 205–226, 2008, DOI: 10.1007/s00531-007-0254-3. [CrossRef] [Google Scholar]
- Hanner, M.S., J.L. Weinberg, L.M. DeShields II, B.A. Green, and G.N. Toller. Zodiacal light and the asteroid belt: view from Pioneer-10. J. Geophys. Res., 79 (25), 3671–3675, 1974. [CrossRef] [Google Scholar]
- Harder, J., G. Lawrence, J. Fontenla, G. Rottman, and T. Woods. The spectral irradiance monitor: scientific requirements, instrument design, and operation modes. Sol. Phys., 230, 141–167, 2005, DOI: 10.1007/0-387-37625-9_9. [NASA ADS] [CrossRef] [Google Scholar]
- Harder, J.W., J.M. Fontenla, P. Pilewskie, E.C. Richard, and T.N. Woods. Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett., 36, L07801, 2009, DOI: 10.1029/2008GL036797. [Google Scholar]
- Hardy, D.A., M.S. Gussenhoven, and D. Brautigam. A statistical model of auroral ion precipitation. J. Geophys. Res., 94 (A1), 370–392, 1989, DOI: 10.1029/JA094iA01p00370. [Google Scholar]
- Hardy, D.A., M.S. Gussenhoven, and E. Holeman. A statistical model of auroral electron precipitation. J. Geophys. Res., 90 (A5), 4229–4248, 1985, DOI: 10.1029/JA090iA05p04229. [Google Scholar]
- Haurwitz, B., and D. Cowley. The lunar barometric tide, its global distribution and annual variation. Pure Appl. Geophys., 77, 122–150, 1969, DOI: 10.1007/BF00876008. [CrossRef] [Google Scholar]
- Hawkins, G.S. Variation in the occurrence rate of meteors. Astronom. J., 61, 386–391, 1956, DOI: 10.1086/107367. [Google Scholar]
- Hawkins, G.S., and E.K.L. Upton. The influx rate of meteors in the Earth’s atmosphere. Astrophys. J., 128, 727–735, 1958, DOI: 10.1086/146585. [NASA ADS] [CrossRef] [Google Scholar]
- Hecht, J.H., D.J. Strickland, and M.G. Conde. The application of ground-based optical techniques for inferring electron energy deposition and composition change during auroral precipitation events. J. Atmos. Solar Terr. Phys., 68, 1502–1519, 2006. [Google Scholar]
- Hecht, J.H., T. Mulligan, D.J. Strickland, A.J. Kocenash, Y. Murayama, et al. Satellite and ground-based observations of auroral energy deposition and the effects on thermospheric composition during large geomagnetic storms: 1. Great geomagnetic storm of 20 November 2003. J. Geophys. Res., 113, A01310, 2008, DOI: 10.1029/2007JA012365. [CrossRef] [Google Scholar]
- Hofmeister, A.M., and R.E. Criss. Earth’s heat flux revised and linked to chemistry. Tectonophysics, 395, 159–177, 2005, DOI: 10.1016/j.tecto.2004.09.006. [NASA ADS] [CrossRef] [Google Scholar]
- Holton, J.R. An introduction to dynamic meteorology, Elsevier Academic Press, 2nd edn., San Diego, CA, USA, ISBN-10: 012384660/ISBN-13: 860-1407127349, 2004. [Google Scholar]
- Hoyt, D.V., and K.H. Schatten. The role of the sun in climate change, Oxford University Press, New York, NY, USA, ISBN: 0-19-509413-1/ISBN: 0-19-509414-X, 1997. [Google Scholar]
- Hubert, B., J.-C. Gérard, D.S. Evans, M. Meurant, S.B. Mende, H.U. Frey, and T.J. Immel. Total electron and proton energy input during auroral substorms: remote sensing with IMAGE-FUV. J. Geophys. Res., 107 (A8), 1183, 2002, DOI: 10.1029/2001JA009229. [CrossRef] [Google Scholar]
- Ishiguro, M., H. Yang, F. Usui, J. Pyo, M. Ueno, T. Ootsubo, S.M. Kwon, and T. Mukai. High-resolution imaging of the gegenschein and the geometric albedo of interplanetary dust. Astrophys. J., 767 (1), 1–34, 2013, DOI: 10.1088/0004-637x/767/1/75. [CrossRef] [Google Scholar]
- Jackman, C.H., D.R. Marsh, F.M. Vitt, R.R. Garcia, C.E. Randall, E.L. Fleming, and S.M. Frith. Long-term middle atmospheric influence on very large solar proton events. J. Geophys. Res., 114, D11304, 2009, DOI: 10.1029/2008JD011415. [Google Scholar]
- Janches, D., C.J. Heinselman, J.L. Chau, A. Chandran, and R. Woodman. Modeling the global micrometeor input function in the upper atmosphere observed by high power and large aperture radars. J. Geophys. Res., 111, A07317, 2006, DOI: 10.1029/2006JA011628. [Google Scholar]
- Jaupart, C., S. Labrosse,F. Lucazeau, and J.-C. Mareschal. Temperatures, heat, and energy in the mantle of the earth. Gerald Schubert, Editor-in-cheif. Treatise on geophysics, 2nd edn., vol 7, Elsevier, Oxford, 223–270, 2015. [CrossRef] [Google Scholar]
- Kamide, Y., W. Baumjohann, I.A. Daglis, W.D. Gonzalez, M. Grande, et al. Current understanding of magnetic storms: storm-substorm relationships. J. Geophys. Res., 103 (A8), 17705–17728, 1998, DOI: 10.1029/98JA01426. [Google Scholar]
- Kelsall, T., J.L. Weiland, B.A. Franz, W.T. Reach, R.G. Arendt, et al. The COBE diffuse infrared background experiment search for the cosmic infrared background: II. Model of the interplanetary dust cloud. Astrophys. J., 508, 44–73, 1998, DOI: 10.1086/306380. [Google Scholar]
- Khomich, V.Y., A.I. Semenov, and N.N. Shefov. Airglow as an indicator of upper atmospheric structure and dynamics, Springer, Berlin, Heidelberg, Germany, ISBN: 978-3-540-75833-4, 2008. [Google Scholar]
- Knipp, D.J., B.A. Emery, M. Engebretson, X. Li, A.H. McAllister, et al. An overview of the early November 1993 geomagnetic storm. J. Geophys. Res., 103 (A11), 26197–26220, 1998, DOI: 10.1029/98JA00762. [CrossRef] [Google Scholar]
- Kopp, G. An assessment of the solar irradiance record for climate studies. J. Space Weather Space Clim., 4, A14, 2014, DOI: 10.1051/swsc2014012. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kopp, G., and J.L. Lean. A new, lower value of irradiance: evidence and climate significance. Geophys. Res. Lett., 38, L01706, 2011, DOI: 10.1029/2010GL045777. [Google Scholar]
- Kotaki, M., and C. Katoh. The global distribution of thunderstorm activity observed by the Ionospheric Sounding Satellite (ISS-b). J. Atmos. Terr. Phys., 45, 843–847, 1983. [Google Scholar]
- Krick, J.E., W.J. Glaccum, S.J. Carey, P.J. Lowrance, J.A. Surace, J.G. Ingalls, J.L. Hora, and W.T. Reach. A Spitzer/IRAC measure of the zodiacal light. Astrophys. J., 754, 1–5, 2012, DOI: 10.1088/0004-637X/754/1/53. [NASA ADS] [CrossRef] [Google Scholar]
- Laundal, K.M., and N. Østgaard. Asymmetric auroral intensities in the Earth’s Northern and Southern hemispheres. Nature, 460, 491–493, 2009, DOI: 10.1038/nature08154. [CrossRef] [Google Scholar]
- Lean, J. The Sun’s variable radiation and its relevance for Earth. Annu. Rev. Astron. Astrophys., 35, 33–67, 1997, DOI: 10.1146/annurev.astro.35.1.33. [Google Scholar]
- Leinert, C. Zodiacal light – a measure of the interplanetary environment. Space Sci. Rev., 18, 281–339, 1975, DOI: 10.1007/BF00212910. [CrossRef] [Google Scholar]
- Leinert, C., P. Abraham, J. Acosta-Pulido, D. Lemke, and R. Siebenmorgen. Mid-infrared spectrum of the zodiacal light observed with ISOPHOT. A&A, 393, 1073–1079, 2002, DOI: 10.1051/0004-6361:20021029. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Leinert, C., S. Bowyer, L.K. Haikala, M.S. Hanner, M.G. Hauser, et al. The 1997 reference of diffuse night sky brightness. Astron. Astrophys. Supp., 127, 1–99, 1998, DOI: 10.1051/aas:1998105. [Google Scholar]
- Li, H., C. Wang, W.Y. Xu, and J.R. Kan. Characteristics of magnetospheric energetics during geomagnetic storms. J. Geophys. Res., 117, A04225, 2012, DOI: 10.1029/2012JA017584. [Google Scholar]
- Liou, K. Polar Ultraviolet Imager observation of auroral breakup. J. Geophys. Res., 115, A12219, 2010, DOI: 10.1029/2010JA015578. [CrossRef] [Google Scholar]
- Liu, X.-C., G.-X. Chen, W.-Y. Xu, A.-M. Du, Y.-Y. Wu, B. Chen, Y. Wang, and X.-D. Zhao. Relationships of the auroral precipitating particle power with AE and Dst indices. Chinese J. Geophys., 51, 686–693, 2008, DOI: 10.1002/cjg2.1260. [CrossRef] [Google Scholar]
- Lopez, R.E., J.G. Lyon, E. Mitchell, R. Bruntz, V.G. Merkin, S. Brogl, F. Toffoletto, and M. Wiltberger. Why doesn’t the ring current injection rate saturate? J. Geophys. Res., 114, A02204, 2009, DOI: 10.1029/2008JA013141. [CrossRef] [Google Scholar]
- Love, S.G., and D.E. Brownlee. Heating and thermal transformation of micrometeoroids entering the Earth’s atmosphere. Icarus, 89, 26–43, 1991, DOI: 10.1016/0019-1035(91)90085-8. [NASA ADS] [CrossRef] [Google Scholar]
- Love, S.G., and D.E. Brownlee. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science, 262, 550–553, 1993, DOI: 10.1126/science.262.5133.550. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lu, G., A.D. Richmond, B.A. Emery, and R.G. Roble. Magnetosphere-ionosphere-thermosphere coupling: effect of neutral winds on energy transfer and field-aligned current. J. Geophys. Res., 100 (A10), 19643–19659, 1995, DOI: 10.1029/95JA00766. [Google Scholar]
- Lu, G., D.N. Baker, R.L. McPherron, C.J. Farrugia, D. Lummerzheim, et al. Global energy deposition during the January 1997 magnetic cloud event. J. Geophys. Res., 103 (A6), 11685–11694, 1998, DOI: 10.1029/98JA00897. [NASA ADS] [CrossRef] [Google Scholar]
- Luan, X., W. Wang, A. Burns, S. Solomon, Y. Zhang, and L.J. Paxton. Seasonal and hemispheric variations of the total auroral precipitation energy flux from TIMED/GUVI. J. Geophys. Res., 115, A11304, 2010, DOI: 10.1029/2009JA015063. [CrossRef] [Google Scholar]
- MacGorman, D.R., and W.D. Rust. The electrical nature of storms, Oxford University Press, New York, NY, USA, ISBN-10: 0195073371/ISBN-13: 978-0195073379, 1998. [Google Scholar]
- Mackerras, D., M. Darveniza, R.E. Orville, E.R. Williams, and S.J. Goodman. Global lightning: total, cloud and ground flash estimates. J. Geophys. Res., 103 (D16), 19791–19809, 1998, DOI: 10.1029/98JD01461. [CrossRef] [Google Scholar]
- Mathis, J.S., P.G. Mezger, and N. Panagia. Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds. A&A, 128 (1), 212–229, 1983. [Google Scholar]
- Matthews, G. Celestial body irradiance determination from an underfilled satellite radiometer: application to albedo and thermal emission measurements of the Moon using CERES. Appl. Opt., 47, 4981–4993, 2008, DOI: 10.1364/AO.47.004981. [CrossRef] [Google Scholar]
- Mathews, J.D., D. Janches, D.D. Meisel, and Q.-H. Zhou. The micrometeoroid mass flux into the upper atmosphere: arecibo results and a comparison with prior estimates. Geophys. Res. Lett., 28 (10), 1929–1932, 2001, DOI: 10.1029/2000GL012621. [NASA ADS] [CrossRef] [Google Scholar]
- Maurette, M. Micrometeorites and the mysteries of our origins, Springer, Berlin, Heidelberg, Germany, ISBN: 978-3-540-25816-2, 2006. [CrossRef] [Google Scholar]
- McLandress, C. The seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere. Part I: the role of gravity waves and planetary waves. J. Atmos. Sci., 59 (5), 893–906, 2002. [CrossRef] [Google Scholar]
- McLandress, C., and W.E. Ward. Tidal/gravity wave interactions and their influence on the large-scale dynamics of the middle atmosphere: model results. J. Geophys. Res., 99 (D4), 8139–8155, 1994. DOI: 10.1029/94JD00486. [CrossRef] [Google Scholar]
- Meier, R.R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci. Rev., 58, 1–185, 1991, DOI: 10.1007/BF01206000. [NASA ADS] [CrossRef] [Google Scholar]
- Meinel, A.B. The spectrum of the airglow and the aurora. Rep. Prog. Phys., 14, 121–146, 1951, DOI: 10.1088/0034-4885/14/1/305. [CrossRef] [Google Scholar]
- Mezger, P.G. The interstellar radiation field and its interaction with the interstellar matter. In: Galactic and extragalactic background radiation, A92-24276, Kluwer Academic Publishers, Dordrecht, The Netherlands, 63–73, 1990. [CrossRef] [Google Scholar]
- Mironova, I.A., K.L. Aplin, F. Arnold, G.A. Bazilevskaya, R.G. Harrison, A.A. Krivolutsky, K.A. Nicoll, E.V. Rozanov, E. Turunen, and I.G. Usoskin. Energetic particle influence on the earth’s atmosphere. Space Sci. Rev., 194, 1–96, 2015, DOI: 10.1007/s11214-015-0185-4. [NASA ADS] [CrossRef] [Google Scholar]
- Miyashita, Y., Y. Miyoshi, Y. Matsumoto, A. Ieda, Y. Kamide, et al. Geotail observations of signatures in the near-Earth magnetotail for the extremely intense substorms of the 30 October 2003 storm. J. Geophys. Res., 110, A09S25, 2005, DOI: 10.1029/2005JA011070. [CrossRef] [Google Scholar]
- Mlynczak, M.G. Energetics of the mesosphere and lower thermosphere and the SABER experiment. Adv. Space Res., 20 (6), 1177–1183, 1997, DOI: 10.1016/S0273-1177(97)00769-2. [Google Scholar]
- Murcray, F.H. The spectral dependence of lunar emissivity. J. Geophys. Res., 70, 4959–4962, 1965, DOI: 10.1029/JZ070i019p04959. [CrossRef] [Google Scholar]
- Murcray, F.H., D.G. Murcray, and W.J. Williams. Infrared emissivity of lunar surface features 1. Balloon-borne observations. J. Geophys. Res., 75 (14), 2662–2669, 1970, DOI: 10.1029/JB075i014p02662. [CrossRef] [Google Scholar]
- Newell, P.T., K. Liou, T. Sortirelis, and C.-I. Meng. Auroral precipitation power during substorms: a Polar UV Imager-based superposed epoch analysis. J. Geophys. Res., 106 (A12), 28885–28896, 2001, DOI: 10.1029/2000JA000428. [CrossRef] [Google Scholar]
- Newell, P.T., T. Sotirelis, and S. Wing. Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J. Geophys. Res., 114, A09207, 2009, DOI: 10.1029/2009JA014326. [Google Scholar]
- Ngwira, C.M., A. Pulkkinen, M.L. Mays, M.M. Kuznetsova, A.B. Galvin, K. Simunac, D.N. Baker, X. Li, Y. Zheng, and A. Glocer. Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was Earth directed? Space Weather, 11, 671–679, 2013, DOI: 10.1002/2013SW000990. [CrossRef] [Google Scholar]
- Norton, O.R., and L.A. Chitwood. Field guide to meteors and meteorites, Springer, London, ISBN-10: 1848001568/ISBN-13: 978-1848001565, 2008. [CrossRef] [Google Scholar]
- Noterdaeme, P., P. Petitjean, R. Srianand, C. Ledoux, and S. López. The evolution of the cosmic microwave background temperature. A&A, 526 (L7), 1–5, 2011. [CrossRef] [EDP Sciences] [Google Scholar]
- NRC. Solar Influences on Global Change, National Research Council (U.S.), Committee on Global Change, National Academy Press, Washington, DC, ISBN: 0-309-53812-2, 1994. [Google Scholar]
- Oberheide, J., M.E. Hagan, R.G. Roble, and D. Offermann. Sources of nonmigrating tides in the tropical middle atmosphere. J. Geophys. Res., 107 (D21), 4567, 2002, DOI: 10.1029/2002JD002220. [Google Scholar]
- Orville, R.E., and D.W. Spencer. Global lightning flash frequency. Mon. Wea. Rev., 107, 934–943, 1979, DOI: 10.1175/1520-0493(1979)107<0934:GLFF>2.0.CO;2. [CrossRef] [Google Scholar]
- Oyama, S., K. Shiokawa, J. Kurihara, T.T. Tsuda, S. Nozawa, Y. Ogawa, Y. Otsuka, and B.J. Watkins. Lower-thermospheric wind fluctuations measured with an FPI during pulsating aurora at Tromso Norway. Ann. Geophys., 28, 1847–1857, 2010, DOI: 10.5194/angeo-28-1847-2010. [CrossRef] [Google Scholar]
- Palmroth, M., P. Janhunen, T.I. Pulkkinen, and H.E.J. Koskinen. Ionospheric energy input as a function of solar wind parameters: global MHD simulation results. Ann. Geophys., 22, 549–566, 2004. [CrossRef] [Google Scholar]
- Penzias, A.A., and R.W. Wilson. A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J., 142, 419–421, 1965, DOI: 10.1086/148307. [Google Scholar]
- Pertsev, N., and V. Perminov. Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod Russia. Ann. Geophys., 26, 1049–1056, 2008, DOI: 10.5194/angeo-26-1049-2008. [CrossRef] [Google Scholar]
- Pollack, H.N., S.J. Hurter, and J.R. Johnson. Heat flow from the Earth’s interior: analysis of the global dataset. Rev. Geophys., 31 (3), 267–280, 1993, DOI: 10.1029/93RG01249. [NASA ADS] [CrossRef] [Google Scholar]
- Plane, J.M.C. Cosmic dust in the earth’s atmosphere. Chem. Soc. Rev., 41, 6507–6518, 2012, DOI: 10.1039/c2cs35132c. [NASA ADS] [CrossRef] [Google Scholar]
- Platzman, G.W. An observational study of energy balance in the atmospheric lunar tide. Pure Appl. Geophys., 137, 1–33, 1991, DOI: 10.1007/BF00876887. [CrossRef] [Google Scholar]
- Price, C., J. Penner, and M. Prather. NOx from lightning: 1. Global distribution based on lightning physics. J. Geophys. Res., 102 (D5), 5929–5941, 1997, DOI: 10.1029/96JD03504. [CrossRef] [Google Scholar]
- Pulkkinen, T. Space weather: terrestrial perspective. Living Rev. Sol. Phys., 4, 5–60, 2007, DOI: 10.12942/lrsp-2007-1. [Google Scholar]
- Pulkkinen, T.I., N.Y. Ganushkina, E.I. Kallio, G. Lu, D.N. Baker, N.E. Turner, T.A. Fritz, J.F. Fennell, and J. Roeder. Energy dissipation during a geomagnetic storm: May 1998. Adv. Space. Res., 30, 2231–2240, 2002, DOI: 10.1016/S0273-1177(02)80232-0. [Google Scholar]
- Rakov, V.A., and M.A. Uman. Lightning: physics and effects, Cambridge University Press, New York, NY, USA, ISBN-10: 0521035414/ISBN-13: 978-0521035415, 2003. [CrossRef] [Google Scholar]
- Reach, W.T., P. Morris, F. Boulanger, and K. Okumura. The mid-infrared spectrum of the zodiacal and exozodiacal light. Icarus, 164 (2), 384–403, 2003, DOI: 10.1016/S0019-1035(03)00133-7. [NASA ADS] [CrossRef] [Google Scholar]
- Rostoker, G., and S. Skone. Magnetic flux mapping considerations in the auroral oval and the Earth’s magnetotail. J. Geophys. Res., 98 (A2), 1377–1384, 1993, DOI: 10.1029/92JA01838. [CrossRef] [Google Scholar]
- Sandford, D.J., H.G. Muller, and N.J. Mitchell. Observations of lunar tides in the mesosphere and lower thermosphere at Arctic and middle latitudes. Atmos. Chem. Phys., 6, 4117–4127, 2006, DOI: 10.5194/acp-6-4117-2006. [CrossRef] [Google Scholar]
- Schumann, U., and H. Huntrieser. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys., 7, 3823–3907, 2007, DOI: 10.5194/acp-7-3823-2007. [CrossRef] [Google Scholar]
- Sclater, J.G., C. Jaupart, and D. Galson. The heat flow through oceanic and continental crust and the heat loss of the Earth. Rev. Geophys., 18 (1), 269–311, 1980, DOI: 10.1029/RG018i001p00269. [CrossRef] [Google Scholar]
- Sellers, W.D. Physical climatology, University of Chicago Press, Chicago, IL, USA, ISBN-10: 0226746992/ISBN-13: 978-0226746999, 1965. [Google Scholar]
- Seppälä, A., P.T. Verronen, V.F. Sofieva, J. Tamminen, E. Kyrölä, C.J. Rodger, and M.A. Clilverd. Destruction of the tertiary ozone maximum during a solar proton event. Geophys. Res. Lett., 33, L07804, 2006, DOI: 10.1029/2005GL025571. [CrossRef] [Google Scholar]
- Silbergleit, V.M., M.M. Zossi de Artigas, and J.R. Manzano. Energy dissipation in substorms: plasmoids ejection. J. Atmos. Solar Terr. Phys., 59, 1355–1358, 1997, DOI: 10.1016/S1364-6826(96)00108-3. [CrossRef] [Google Scholar]
- Slavin, J.A., D.H. Fairfield, M.M. Kuznetsova, C.J. Owen, R.P. Lepping, et al. ISTP observations of plasmoid ejection: IMP 8 and Geotail. J. Geophys. Res., 103 (A1), 119–133, 1998, DOI: 10.1029/97JA02136. [CrossRef] [Google Scholar]
- Slinker, S.P., J.A. Fedder, and J.G. Lyon. Plasmoid formation and evolution in a numerical simulation of a substorm. Geophys. Res. Lett., 22 (7), 859–862, 1995, DOI: 10.1029/95GL00300. [CrossRef] [Google Scholar]
- Solanki, S.K., N.A. Krivova, and J.D. Haigh. Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys., 51, 311–351, 2013, DOI: 10.1146/annurev-astro-082812-141007. [Google Scholar]
- Sparrow, J.G., and E.P. Ney. Discrete light sources observed by satellite OSO-B. Science, 161 (3840), 459–460, 1968, DOI: 10.1126/science.161.3840.459. [CrossRef] [Google Scholar]
- Sparrow, J.G., and E.P. Ney. Lightning observations by satellite. Nature, 232, 540–541, 1971, DOI: 10.1038/232540a0. [CrossRef] [Google Scholar]
- Stacey, F.D., and P.M. Davis. Physics of the Earth, 4th edn., Cambridge University Press, New York, NY, USA, ISBN-10: 1107394236/ISBN-13: 9781107394230, 2008. [CrossRef] [Google Scholar]
- Stanev, T. High energy cosmic rays, Praxis Publishing Ltd, Chichester, UK, ISBN-10: 3540406530/ISBN-13: 978-3540406532, 2004. [Google Scholar]
- Stein, C.A., and S. Stein. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123–129, 1992, DOI: 10.1038/359123a0. [CrossRef] [Google Scholar]
- Stephens, G.L., J. Li, M. Wild, C.A. Clayson, N. Loeb, S. Kato, T. L’Ecuyer, P.W. Stackhouse Jr., M. Lebsock, and T. Andrews. An update on Earth’s energy balance in light of the latest global observations. Nature Geosci., 5, 691–696, 2012, DOI: 10.1038/ngeo1580. [CrossRef] [Google Scholar]
- Stern, D.P. Energetics of the magnetosphere. Space Sci. Rev., 39, 193–213, 1984, DOI: 10.1007/BF00173674. [CrossRef] [Google Scholar]
- Tanskanen, E.I., M. Palmroth, T.I. Pulkkinen, H.E.J. Koskinen, P. Janhunen, N. Ostgaard, J.A. Slavin, and K. Liou. Energetics of a substorm on 15 August, 2001: comparing empirical methods and a global MHD simulation. Adv. Space Res., 36 (10), 1825–1829, 2005, DOI: 10.1016/j.asr.2004.05.013. [CrossRef] [Google Scholar]
- Tanskanen, E., T.I. Pulkkinen, H.E.J. Koskinen, and J.A. Slavin. Substorm energy budget during low and high solar activity: 1997 and 1999 compared. J. Geophys. Res., 107 (A6), SMP 15-1–SMP 15-11, 2002, DOI: 10.1029/2001JA900153. [Google Scholar]
- Taylor, S., J.H. Lever, and R.P. Harvey. Accretion rate of cosmic spherules measured at the South Pole. Nature, 392, 899–903, 1998, DOI: 10.1038/31894. [CrossRef] [Google Scholar]
- Torr, M.R., D.G. Torr, M. Zukic, R.B. Johnson, J. Ajello, et al. A far ultraviolet imager for the international solar-terrestrial physics mission. Space Sci. Rev., 71, 329–383, 1995. [CrossRef] [Google Scholar]
- Trenberth, K.E., J.T. Fasullo, and J. Kiehl. Earth’s global energy budget. Bull. Amer. Meteorol. Soc., 90 (3), 311–324, 2009, DOI: 10.1175/2008BAMS2634.1. [NASA ADS] [CrossRef] [Google Scholar]
- Tsumura, K., J. Battle, J. Bock, A. Cooray, V. Hristov, et al. Observations of the near-infrared spectrum of the zodiacal light with Ciber. Astrophys. J., 719, 394–402, 2010, DOI: 10.1088/0004-637X/719/1/394. [NASA ADS] [CrossRef] [Google Scholar]
- Uman, M.A. The lightning discharge, vol. 39, Academic Press, Orlando, FL, USA, ISBN-10: 0080959814/ISBN-13: 9780080959818, 1987. [Google Scholar]
- Usoskin, I.G., S.K. Solanki, and G.A. Kovaltsov. Grand minima and maxima of solar activity: new observational constraints. A&A, 471, 301–309, 2007, DOI: 10.1051/0004-6361:20077704. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Vazquez, M., and J.M. Vaquero. Aurorae observed at the Canary Islands. Sol. Phys., 267 (2), 431–444, 2010, DOI: 10.1007/s11207-010-9650-0. [CrossRef] [Google Scholar]
- Vial, F., and J.M. Forbes. Monthly simulations of the lunar semi-diurnal tide. J. Atmos. Terr. Phys., 56 (12), 1591–1607, 1994, DOI: 10.1016/0021-9169(94)90089-2. [CrossRef] [Google Scholar]
- Wasson, J.T., and F.T. Kyte. Comment on the letter “On the influx of small comets into the Earth’s atmosphere II: interpretation”. Geophys. Res. Lett., 14 (7), 779–780, 1987, DOI: 10.1029/GL014i007p00779. [CrossRef] [Google Scholar]
- Weiss, L.A., P.H. Reiff, J.J. Moses, R.A. Heelis, and B.D. Moore. Energy dissipation in substorms, Proceedings of the First International Conference on Substorms, 23–27 March 1992, 309–317, 1992, ESA SP-335. [Google Scholar]
- Werner, M.W., and W.E. Salpeter. Grain temperatures in interstellar dust clouds. Mon. Not. R. Astron. Soc., 145, 249–269, 1969. [NASA ADS] [CrossRef] [Google Scholar]
- Wild, M., D. Folini, C. Schär, N. Loeb, E.G. Dutton, and G. K-Langlo. The global energy balance from a surface perspective. Clim. Dyn., 40, 3107–3134, 2013, DOI: 10.1007/s00382-012-1569-8. [CrossRef] [Google Scholar]
- Williams, D.L., and R.P. Von Herzen. Heat loss from the Earth: new estimate. Geology, 2 (7), 327–328, 1974, DOI: 10.1130/0091-7613(1974)2<327:HLFTEN>2.0.CO;2. [CrossRef] [Google Scholar]
- Willson, R.C., and H.S. Hudson. Solar luminosity variations in solar cycle 21. Nature, 332, 810–812, 1988, DOI: 10.1038/332810a0. [NASA ADS] [CrossRef] [Google Scholar]
- Willson, R.C., and H.S. Hudson. The Sun’s luminosity over a complete solar cycle. Nature, 351, 42–44, 1991, DOI: 10.1038/351042a0. [NASA ADS] [CrossRef] [Google Scholar]
- Wright, E.L. Angular power spectra of the COBE DIRBE maps. Astrophys. J., 496, 1–8, 1998, DOI: 10.1086/305345. [Google Scholar]
- Yang, H.G., and M. Ishiguro. Origin of interplanetary dust through optical properties of zodiacal light. Astrophys. J., 813 (2), 1–9, 2015, DOI: 10.1088/0004-637X/813/2/87. [Google Scholar]
- Zhang, X., J.M. Forbes, and M.E. Hagan. Longitudinal variation of tides in the MLT region: 1. Tides driven by tropospheric net radiative heating. J. Geophys. Res., 115, A06316, 2010a, DOI: 10.1029/2009JA014897. [Google Scholar]
- Zhang, X., J.M. Forbes, and M.E. Hagan. Longitudinal variation of tides in the MLT region: 2. Relative effects of solar radiative and latent heating. J. Geophys. Res., 115, A06317, 2010b, DOI: 10.1029/2009JA014898. [Google Scholar]
- Zipser, E.J. Deep cumulonimbus cloud systems in the tropics with and without lightning. Mon. Wea. Rev., 122, 1837–1851, 1994, DOI: 10.1175/1520-0493(1994)122<1837:DCCSIT>2.0.CO;2. [CrossRef] [Google Scholar]
- Zirker, J.B. Coronal holes and high-speed wind streams. Rev. Geophys., 15 (3), 257–269, 1977, DOI: 10.1029/RG015i003p00257. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.