Open Access

This article has an erratum: [https://doi.org/10.1051/swsc/2023031]


Table D1

Configuration of the ML model. (1) refers to the error value for 1-day forecasting. Same for (2) refers to 2-day forecasting, and (3) for 3-day forecasting. *In the 1D-CNN layer, 32 filters, a kernel size of 5, and strides of 1 were used.

Model architecture No. of hidden layers No. of hidden neurons Activation function Batch size Learning rate Epochs Callbacks functions Validation Set
Testing Set
MAE MSE RMSE MAPE MAE MSE RMSE MAPE
Linear 64 0.001 100 EarlyStopping 0.312 0.141 0.376 87.883 0.143 0.045 0.211 60.689
Dense ML 2 32 ReLU 64 0.001 100 EarlyStopping 0.262 (1) 0.118 (1) 0.344 (1) 132.580 (1) 0.400 (1) 0.281 (1) 0.530 (1) 238.898 (1)
0.275 (2) 0.138 (2) 0.372 (2) 132.004 (2) 0.395 (2) 0.286 (2) 0.535 (2) 234.704 (2)
0.290 (3) 0.166 (3) 0.407 (3) 129.288 (3) 0.392 (3) 0.294 (3) 0.542 (3) 230.896 (3)
Simple RNN 2 32 Tanh 64 0.001 EarlyStopping 0.143 (1) 0.035 (1) 0.187 (1) 70.990 (1) 0.178 (1) 0.052 (1) 0.228 (1) 69.624 (1)
100 ModelCheckpoint 0.171 (2) 0.063 (2) 0.251 (2) 68.694 (2) 0.171 (2) 0.071 (2) 0.266 (2) 78.075 (2)
0.264 (3) 0.118 (3) 0.343 (3) 72.505 (3) 0.200 (3) 0.084 (3) 0.289 (3) 67.416 (3)
Stateful RNN 3 32 Tanh 64 1.58e−4 100 LearningRateScheduler 0.203 (1) 0.060 (1) 0.244 (1) 56.390 (1) 0.155 (1) 0.039 (1) 0.197 (1) 59.988 (1)
EarlyStopping 0.305 (2) 0.131 (2) 0.362 (2) 81.028 (2) 0.223 (2) 0.079 (2) 0.281 (2) 71.679 (2)
0.349 (3) 0.173 (3) 0.416 (3) 82.819 (3) 0.223 (3) 0.084 (3) 0.289 (3) 64.159 (3)
Stateful LSTM 3 32 Tanh 64 1.58e−4 100 EarlyStopping 0.095 (1) 0.021 (1) 0.146 (1) 40.335 (1) 0.098 (1) 0.020 (1) 0.141 (1) 41.781 (1)
0.151 (2) 0.048 (2) 0.220 (2) 48.937 (2) 0.134 (2) 0.042 (2) 0.205 (2) 57.860 (2)
0.174 (3) 0.076 (3) 0.275 (3) 55.662 (3) 0.166 (3) 0.071 (3) 0.267 (3) 68.025 (3)
Stateful Bi-LSTM 3 32 Tanh 64 1.58e−4 100 EarlyStopping 0.149 (1) 0.043 (1) 0.207 (1) 58.151 (1) 0.170 (1) 0.049 (1) 0.221 (1) 71.059 (1)
0.190 (2) 0.249 (3) 0.074 (2) 0.120 (3) 0.272 (2) 0.347 (3) 60.154 (2) 67.988 (3) 0.211 (2) 0.229 (3) 0.090 (2) 0.108 (3) 0.300 (2) 0.329 (3) 92.727 (2) 87.049 (3)
1D-CNN LSTM 3 32 (5,1)* ReLU 64 1.58e-4 100 EarlyStopping 0.108 (1) 0.027 (1) 0.165 (1) 41.164 (1) 0.098 (1) 0.023 (1) 0.151 (1) 51.732 (1)
0.146 (2) 0.051 (2) 0.226 (2) 47.512 (2) 0.138 (2) 0.047 (2) 0.217 (2) 68.376 (2)
0.177 (3) 0.078 (3) 0.279 (3) 53.087 (3) 0.156 (3) 0.067 (3) 0.259 (3) 69.338 (3)

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.