Issue |
J. Space Weather Space Clim.
Volume 13, 2023
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.1051/swsc/2023026 | |
Published online | 20 October 2023 |
- Alharbi FR, Csala D. 2021. Short-term solar irradiance forecasting model based on bidirectional long short-term memory deep learning. In: 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), IEEE, pp. 1–6. https://doi.org/10.1109/ICECCE52056.2021.9514233. [Google Scholar]
- Aminalragia-Giamini S, Raptis S, Anastasiadis A, Tsigkanos A, Sandberg I, Papaioannou A, Papadimitriou C, Jiggens P, Aran A, Daglis IA. 2021. Solar energetic particle event occurrence prediction using solar flare soft X-ray measurements and machine learning. J Space Weather Space Clim 11: 59. https://doi.org/10.1051/swsc/2021043. [CrossRef] [EDP Sciences] [Google Scholar]
- Aschwanden MJ. 2002. Particle acceleration and kinematics in solar flares: a synthesis of recent observations and theoretical concepts (invited review). Space Sci Rev 101(1): 1–227. https://doi.org/10.1023/A:1019712124366. [CrossRef] [Google Scholar]
- Benson B, Pan WD, Prasad A, Gary GA, Hu Q. 2020. Forecasting solar cycle 25 using deep neural networks. Sol Phys 295(5): 65. https://doi.org/10.1007/s11207-020-01634-y. [CrossRef] [Google Scholar]
- Bruno A, Richardson IG. 2021. Empirical model of 10–130 MeV solar energetic particle spectra at 1 AU based on coronal mass ejection speed and direction. Sol Phys 296(2): 36. https://doi.org/10.1007/s11207-021-01779-4. [CrossRef] [Google Scholar]
- Cohen C, Mewaldt R. 2018. The ground-level enhancement event of September 2017 and other large solar energetic particle events of cycle 24. Space Weather 16(10): 1616–1623. https://doi.org/10.1029/2018SW002006. [NASA ADS] [CrossRef] [Google Scholar]
- Dalla S, Swalwell B, Battarbee M, Marsh MS, Laitinen T, Proctor SJ. 2017. Application of test particle simulations to solar energetic particle forecasting. In: Proceedings of the International Astronomical Union, Volume 13, Symposium S335: Space Weather of the Heliosphere: Processes and Forecasts, Foullon C, Malandraki OE, (Eds.) Cambridge University Press, pp. 268–271. https://doi.org/10.1017/S1743921317011012. [Google Scholar]
- Debrunner H, Flückiger E, Gradel H, Lockwood J, McGuire R. 1988. Observations related to the acceleration, injection, and interplanetary propagation of energetic protons during the solar cosmic ray event on February 16, 1984. J Geophys Res Space Phys 93(A7): 7206–7216. https://doi.org/10.1029/JA093iA07p07206. [CrossRef] [Google Scholar]
- Desai M, Giacalone J. 2016. Large gradual solar energetic particle events. Living Rev Sol Phys 13(1): 3. https://doi.org/10.1007/s41116-016-0002-5. [CrossRef] [Google Scholar]
- Dierckxsens M, Tziotziou K, Dalla S, Patsou I, Marsh M, Crosby N, Malandraki O, Tsiropoula G. 2015. Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Sol Phys 290(3): 841–874. https://doi.org/10.1007/S11207-014-0641-4. [CrossRef] [Google Scholar]
- Engell A, Falconer D, Schuh M, Loomis J, Bissett D. 2017. SPRINTS: a framework for solar-driven event forecasting and research. Space Weather 15(10): 1321–1346. https://doi.org/10.1002/2017SW001660. [CrossRef] [Google Scholar]
- Feynman J, Armstrong T, Dao-Gibner L, Silverman S. 1990. Solar proton events during solar cycles 19, 20, and 21. Sol Phys 126: 385–401. https://doi.org/10.1007/BF00153058. [CrossRef] [Google Scholar]
- Gabriel S, Evans R, Feynman J. 1990. Periodicities in the occurrence rate of solar proton events. Sol Phys 128: 415–422. https://doi.org/10.1007/BF00838476. [CrossRef] [Google Scholar]
- Goodfellow I, Bengio Y, Courville A. 2016. Deep learning. MIT Press. ISBN 0262035618. [Google Scholar]
- Gopalswamy N, Mäkelä P, Yashiro S, Thakur N, Akiyama S, Xie H. 2017. A hierarchical relationship between the fluence spectra and CME kinematics in large solar energetic particle events: A radio perspective. J Phys Conf Ser 900: 012009. https://doi.org/10.1088/17426596/900/1/012009. [CrossRef] [Google Scholar]
- Graves A, Jaitly N. 2014. Towards end-to-end speech recognition with recurrent neural networks. In: Proceedings of the 31st International Conference on Machine Learning, vol. 32 of Proceedings of Machine Learning Research, Xing EP, Jebara T (Eds.) PMLR, Bejing, China. pp. 1764–1772. https://proceedings.mlr.press/v32/graves14.html. [Google Scholar]
- Graves A, Schmidhuber J. 2005. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw 18(5–6): 602–610. https://doi.org/10.1016/j.neunet.2005.06.042. [CrossRef] [Google Scholar]
- Greff K, Srivastava RK, Koutnik J, Steunebrink BR, Schmidhuber J. 2016. LSTM: A search space odyssey. IEEE Trans Neural Netw Learn Syst 28(10): 2222–2232. https://doi.org/10.1109/TNNLS.2016.2582924. [Google Scholar]
- Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Comput 9(8): 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735. [Google Scholar]
- Hu J, Li G, Ao X, Zank GP, Verkhoglyadova O. 2017. Modeling particle acceleration and transport at a 2-D CME-driven shock. J Geophys Res Space Phys 122(11): 10–938. https://doi.org/10.1002/2017JA024077. [Google Scholar]
- Huang X, Tan H, Lin G, Tian Y. 2018. A LSTM-based bidirectional translation model for optimizing rare words and terminologies. In: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 26–28 May. IEEE, pp. 185–189. https://doi.org/10.1109/ICAIBD.2018.8396191. [Google Scholar]
- Ihianle IK, Nwajana AO, Ebenuwa SH, Otuka RI, Owa K, Orisatoki MO. 2020. A deep learning approach for human activities recognition from multimodal sensing devices. IEEE Access 8: 179028–179038. https://doi.org/10.1109/ACCESS.2020.3027979. [CrossRef] [Google Scholar]
- Kahler S, Cliver E, Cane H, McGuire R, Reames D, Sheeley N Jr, Howard R. 1987. Solar energetic proton events and coronal mass ejections near solar minimum. Proceedings of the 20th International Cosmic Ray Conference Moscow 3: 121–123. [Google Scholar]
- Kahler S, Kazachenko M, Lynch B, Welsch B. 2017. Flare magnetic reconnection fluxes as possible signatures of flare contributions to gradual SEP events. J Phys Conf Ser 900: 012011. https://doi.org/10.1088/1742-6596/900/1/012011. [CrossRef] [Google Scholar]
- Kahler S, Sheeley N Jr, Howard R, Koomen M, Michels D, McGuire RE, von Rosenvinge T, Reames DV. 1984. Associations between coronal mass ejections and solar energetic proton events. J Geophys Res Space Phys 89(A11): 9683–9693. https://doi.org/10.1029/JA089iA11p09683. [CrossRef] [Google Scholar]
- Kane R. 2011. Solar activity during sunspot minimum. Indian J Radio Space Phys 40: 7–10. [Google Scholar]
- Kasapis S, Zhao L, Chen Y, Wang X, Bobra M, Gombosi T. 2022. Interpretable machine learning to forecast SEP events for solar cycle 23. Space Weather 20(2): e2021SW002842. https://doi.org/10.1029/2021SW002842. [CrossRef] [Google Scholar]
- Ketkar N. 2017. Introduction to keras. In: Deep learning with python: a hands-on introduction. Apress, Berkeley, CA, pp. 97–110. https://doi.org/10.1007/978-1-4842-2766-4_7. [CrossRef] [Google Scholar]
- Kingma DP, Ba J. 2015. Adam: A method for stochastic optimization. International Conference on Learning Representations (ICLR), San Diego. https://doi.org/10.48550/arXiv.1412.6980. [Google Scholar]
- Klein K-L, Dalla S. 2017. Acceleration and propagation of solar energetic particles. Space Sci Rev 212: 1107–1136. https://doi.org/10.1007/s11214-017-0382-4. [CrossRef] [Google Scholar]
- Kolen JF, Kremer SC. 2001. Gradient flow in recurrent nets: the difficulty of learning LongTerm Dependencies. In: In: A field guide to dynamical recurrent networks, IEEE, pp. 237–243. [Google Scholar]
- Kóta J, Manchester W, Jokipii J, De Zeeuw D, Gombosi T. 2005. Simulation of SEP acceleration and transport at CME-driven shocks. AIP Conf Proc 781: 201–206. https://doi.org/10.1063/1.2032697. [CrossRef] [Google Scholar]
- Kozarev K, Nedal M, Miteva R, Dechev M, Zucca P. 2022. A multi-event study of early-stage sep acceleration by CME-driven shocks – Sun to 1 AU. Front Astron Space Sci 9: 801429. https://doi.org/10.3389/fspas.2022.801429. [CrossRef] [Google Scholar]
- Kozarev KA, Davey A, Kendrick A, Hammer M, Keith C. 2017. The Coronal Analysis of SHocks and Waves (CASHeW) framework. J Space Weather Space Clim 7: A32. https://doi.org/10.1051/swsc/2017028. [CrossRef] [EDP Sciences] [Google Scholar]
- Kozarev KA, Dayeh MA, Farahat A. 2019. Early-stage solar energetic particle acceleration by coronal mass ejection-driven shocks with realistic seed spectra. I. Low corona. Astrophys J 871(1): 65. https://doi.org/10.3847/1538-4357/aaf1ce. [CrossRef] [Google Scholar]
- Lavasa E, Giannopoulos G, Papaioannou A, Anastasiadis A, Daglis I, Aran A, Pacheco D, Sanahuja B. 2021. Assessing the predictability of solar energetic particles with the use of machine learning techniques. Sol Phys 296(7): 107. https://doi.org/10.1007/s11207-021-01837-x. [CrossRef] [Google Scholar]
- Le G-M, Zhang X-F. 2017. Dependence of large SEP events with different energies on the associated flares and CMEs. Res Astron Astrophys 17(12): 123. https://doi.org/10.1088/1674-4527/17/12/123. [CrossRef] [Google Scholar]
- Li G, Shalchi A, Ao X, Zank G, Verkhoglyadova O. 2012. Particle acceleration and transport at an oblique CME-driven shock. Adv Space Res 49(6): 1067–1075. https://doi.org/10.1016/j.asr.2011.12.027. [CrossRef] [Google Scholar]
- Li G, Zank G, Rice W. 2003. Energetic particle acceleration and transport at coronal mass ejection- driven shocks. J Geophys Res Space Phys 108(A2): 1369. https://doi.org/10.1029/2002JA009666. [CrossRef] [Google Scholar]
- Lin R. 2005. Relationship of solar flare accelerated particles to solar energetic particles (SEPs) observed in the interplanetary medium. Adv Space Res 35(10): 1857–1863. https://doi.org/10.1016/j.asr.2005.02.087. [CrossRef] [Google Scholar]
- Lin R. 2011. Energy release and particle acceleration in flares: summary and future prospects. Space Sci Rev 159: 421–445. https://doi.org/10.1007/s11214-011-9801-0. [CrossRef] [Google Scholar]
- Malandraki OE, Crosby NB. 2018. Solar particle radiation storms forecasting and analysis: The HESPERIA HORIZON 2020 project and beyond. Springer Nature. ISBN 978-3-319-60051-2. [Google Scholar]
- Miteva R, Klein K-L, Malandraki O, Dorrian G. 2013. Solar energetic particle events in the 23rd solar cycle: interplanetary magnetic field configuration and statistical relationship with flares and CMEs. Sol Phys 282(2): 579–613. https://doi.org/10.1007/S11207-012-0195-2. [CrossRef] [Google Scholar]
- Nammous MK, Saeed K, Kobojek P. 2022. Using a small amount of text-independent speech data for a BiLSTM large-scale speaker identification approach. J King Saud Univ Comput Inf Scie 34(3): 764–770. https://doi.org/10.1016/J.JKSUCI.2020.03.011. [Google Scholar]
- Nedal M, Mahrous A, Youssef M. 2019. Predicting the arrival time of CME associated with type-II radio burst using neural networks technique. Astrophys Space Sci 364(9): 161. https://doi.org/10.1007/s10509-019-3651-8. [CrossRef] [Google Scholar]
- Ng CK, Reames DV, Tylka AJ. 2012. Solar energetic particles: shock acceleration and transport through self-amplified waves. AIP Conf Proc 1436: 212–218. https://doi.org/10.1063/1.4723610. [Google Scholar]
- Nymmik R. 2007. To the problem on the regularities of solar energetic particle events occurrence. Adv Space Res 40(3): 321–325. https://doi.org/10.1016/J.ASR.2007.02.013. [CrossRef] [Google Scholar]
- Núñez M. 2011. Predicting solar energetic proton events (E >10 MeV). Space Weather 9(7): S07003. https://doi.org/10.1029/2010SW000640. [Google Scholar]
- Olah C. 2015. Neural networks, types, and functional programming [Blog post]. Available at http://colah.github.io/posts/2015-09-NN-Types-FP/. [Google Scholar]
- Pala Z, Atici R. 2019. Forecasting sunspot time series using deep learning methods. Sol Phys 294(5): 50. https://doi.org/10.1007/s11207-019-1434-6. [CrossRef] [Google Scholar]
- Papaioannou A, Anastasiadis A, Kouloumvakos A, Paassilta M, Vainio R, Valtonen E, Belov A, Eroshenko M Abunina, Abunin A. 2018. Nowcasting solar energetic particle events using principal component analysis. Sol Phys 293(7): 1–23. https://doi.org/10.1007/S11207-018-1320-7. [CrossRef] [Google Scholar]
- Papaioannou A, Vainio R, Raukunen O, Jiggens P, Aran A, Dierckxsens M, Mallios SA, Paassilta M, Anastasiadis A. 2022. The probabilistic solar particle event forecasting (PROSPER) model. J Space Weather Space Clim 12: 24. https://doi.org/10.1051/swsc/2022019. [CrossRef] [EDP Sciences] [Google Scholar]
- Ramstad R, Holmström M, Futaana Y, Lee CO, Rahmati A, Dunn P, Lillis RJ, Larson D. 2018. The September 2017 SEP event in context with the current solar cycle: Mars Express ASPERA-3/IMA and MAVEN/SEP observations. Geophys Res Lett 45(15): 7306–7311. https://doi.org/10.1029/2018GL077842. [CrossRef] [Google Scholar]
- Reames DV. 2000. Particle acceleration by CME-driven shock waves. AIP Conf Proc 516: 289–300. https://doi.org/10.1063/1.1291483. [CrossRef] [Google Scholar]
- Reames DV. 2013. The two sources of solar energetic particles. Space Sci Rev 175: 53–92. https://doi.org/10.1007/s11214-013-9958-9. [CrossRef] [Google Scholar]
- Richardson I, von Rosenvinge T, Cane H. 2016. North/south hemispheric periodicities in the >25 MeV solar proton event rate during the rising and peak phases of solar cycle 24. Sol Phys 291(7): 2117–2134. https://doi.org/10.1007/S11207-016-0948-4. [CrossRef] [Google Scholar]
- Ripley BD. 1996. Pattern recognition and neural networks. Cambridge University Press. ISBN 9780511812651. [CrossRef] [Google Scholar]
- Rodriguez J, Onsager T, Mazur J. 2010. The east-west effect in solar proton flux measurements in geostationary orbit: a new GOES capability. Geophys Res Lett 37(7): L07109. https://doi.org/10.1029/2010GL042531. [Google Scholar]
- Schuster M, Paliwal KK. 1997. Bidirectional recurrent neural networks. IEEE Trans Signal Process 45(11): 2673–2681. https://doi.org/10.1109/78.650093. [CrossRef] [Google Scholar]
- Singh P, Manure A. 2020. Introduction to tensorflow 2.0. In: Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python. Apress, Berkeley, CA, pp. 1–24. https://doi.org/10.1007/978-1-4842-5558-2_1. [Google Scholar]
- Sundermeyer M, Alkhouli T, Wuebker J, Ney H. 2014. Translation modeling with bidirectional recurrent neural networks. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Moschitti A, Pang B, Daelemans W (Eds.), Association for Computational Linguistics, Doha, Qatar. pp. 14–25. https://doi.org/10.3115/V1/D14-1003. [CrossRef] [Google Scholar]
- Švestka Z. 1995. A comparison of solar activity during the decline of several solar cycles. Adv Space Res 16(9): 27–36. https://doi.org/10.1016/0273-1177(95)00311-2. [CrossRef] [Google Scholar]
- Trottet G, Samwel S, Klein K-L, Dudok de Wit T, Miteva R. 2015. Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Sol Phys 290(3): 819–839. https://doi.org/10.1007/S11207-014-0628-1. [CrossRef] [Google Scholar]
- Truscott P, Lei F, Dyer C, Ferguson C, Gurriaran R, et al. 2000. Geant4 – a new Monte Carlo toolkit for simulating space radiation shielding and effects. In: 2000 IEEE Radiation Effects Data Workshop. Workshop Record. Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No. 00TH8527), IEEE, pp. 147–152. https://doi.org/10.1109/REDW.2000.896281. [CrossRef] [Google Scholar]
- Whitman K, Egeland R, Richardson IG, Allison C, Quinn P, et al. 2022. Review of solar energetic particle models. Adv Space Res. https://doi.org/10.1016/j.asr.2022.08.006. [Google Scholar]
- Wilson JW, Townsend LW, Chun SY, Buck WW, Khan F, Cucinotta F. 1988. BRYNTRN: a baryon transport computer code, computation procedures and data base. Technical Report. Available at https://ntrs.nasa.gov/api/citations/19880014330/downloads/19880014330.pdf. [Google Scholar]
- Wöllmer M, Zhang Z, Weninger F, Schuller B, Rigoll G. 2013. Feature enhancement by bidirectional LSTM networks for conversational speech recognition in highly non-stationary noise. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, pp. 6822–6826. https://doi.org/10.1109/ICASSP.2013.6638983. [CrossRef] [Google Scholar]
- Xapsos MA, Stauffer CA, Jordan TM, Adams JH, Dietrich WF. 2012. Periods of high intensity solar proton flux. IEEE Trans Nucl Sci 59(4): 1054–1059. https://doi.org/10.1109/TNS.2012.2196447. [CrossRef] [Google Scholar]
- Zhang W, Zhao X, Feng X, Liu C, Xiang N, Li Z, Lu W. 2022. Predicting the daily 10.7-cm solar radio flux using the long short-term memory method. Universe 8(1): 30–111. https://doi.org/10.3390/universe8010030. [CrossRef] [Google Scholar]
- Zhu H, Zhu W, He M. 2022. Solar cycle 25 prediction using an optimized long short-term memory mode with F10.7. Sol Phys 297(12): 157. https://doi.org/10.1007/s11207-022-02091-5. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.