Space Climate
Open Access
J. Space Weather Space Clim.
Volume 2, 2012
Space Climate
Article Number A01
Number of page(s) 9
Published online 17 May 2012
  • Bartels, J., N.H., Heck, and H.F., Johnston, The three-hour range index measuring geomagnetic activity, J. Geophys. Res., 44, 411, 1939. [Google Scholar]
  • Belcher, J.W., and L. Davis, Large amplitude Alfvén waves in the interplanetary medium, 2, J. Geophys. Res., 76, 3534, 1971. [NASA ADS] [CrossRef] [Google Scholar]
  • Burlaga, L.F., K.W. Behannon, and L.W. Klein, Compound streams, magnetic clouds, and major magnetic storms, J. Geophys. Res., 92, 5725, 1987. [NASA ADS] [CrossRef] [Google Scholar]
  • Dal Lago, A., W.D. Gonzalez, L.A. Balmaceda, L.E.A. Vieira, E. Echer, F.L. Guarnieri, et al., The 17–22 October (1999) solar-interplanetary-geomagnetic event: Very intense geomagnetic storm associated with a pressure balance between interplanetary coronal mass ejection and a high-speed stream, J. Geophys. Res., 111, A07S14, DOI: 10.1029/2005JA011394, 2006. [CrossRef] [Google Scholar]
  • Echer, E., W.D. Gonzalez, B.T. Tsurutani, and A.L.C. Gonzalez, Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006), J. Geophys. Res., 113, A05221, DOI: 10.1029/2007JA012744, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Echer, E., W.D. Gonzalez, and B.T. Tsurutani, Statistical studies of geomagnetic storms with peak Dst ≤ − 50 nT from 1957 to 2008, J. Atmos. Sol.Terr. Phys., 73, 1454, 2011. [Google Scholar]
  • Feminella, F., and M. Storini, Large scale dynamical phenomena during solar activity cycles, Astron. Astrophys., 322, 311, 1997. [Google Scholar]
  • Gnevyshev, M.N., On the 11-years cycle of solar activity, Sol. Phys., 1, 107, 1967. [NASA ADS] [CrossRef] [Google Scholar]
  • Gnevyshev, M.N., Essential features of the 11 year solar cycle, Sol. Phys., 51, 175, 1977. [NASA ADS] [CrossRef] [Google Scholar]
  • Gonzalez, W.D., A.L.C. Gonzalez, and B.T. Tsurutani, Dual peak solar cycle distribution of intense geomagnetic storms, Planet. Space Sci., 38, 181, 1990. [CrossRef] [Google Scholar]
  • Gosling, J.T., D.J. McComas, J.L. Phillips, and S.J. Bame, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections, J. Geophys. Res., 96, 7831, 1991. [NASA ADS] [CrossRef] [Google Scholar]
  • King, J.H., and N.E. Papitashvili, Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and field data, J. Geophys. Res., 110, 2104, 2005. [Google Scholar]
  • Kozyra, J.U., G. Crowley, B.A. Emery, X. Fang, G. Maris, et al., Response of the upper/middle atmosphere to coronal holes and powerful high-speed solar wind streams in 2003, in Recurrent Magnetic Storms: Corotating Solar Wind Streams, ed. B.T. Tsurutani, R.L. McPherron, W.D. Gonzalez, G. Lu, J.H.A. Sobral, and N. Gopalswamy, A.G.U. Geophysical Monograph, 167, 319, 2006. [Google Scholar]
  • Krieger, A.S., A.F. Timothy, and E.C. Roelof, A coronal hole and its identification as the source of a high velocity solar wind stream, Sol. Phys., 29, 505, 1973. [NASA ADS] [CrossRef] [Google Scholar]
  • Mayaud, P.N., The aa indices: A 100-year series characterising the geomagnetic activity, J. Geophys. Res., 77, 6870, 1972. [Google Scholar]
  • Menvielle, M., and A. Berthelier, The K-derived planetary indices: Description and availability, Rev. Geophys., 29, 415, DOI: 10.1029/91RG00994, 1991. [Google Scholar]
  • Richardson, I.G., The formation of CIRs at stream-stream interfaces and resultant geomagnetic activity, in Recurrent Magnetic Storms: Corotating Solar Wind Streams, ed. B.T. Tsurutani, R.L. McPherron, W.D. Gonzalez, G. Lu, J.H.A. Sobral, and N. Gopalswamy A.G.U. Geophysical Monograph, 167, 45, 2006. [CrossRef] [Google Scholar]
  • Richardson, I.G., and H.V. Cane, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties, Sol. Phys., 264, 189, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Richardson, I.G., and H.V. Cane, Near-Earth solar wind flows and related geomagnetic activity over more than four solar cycles (1964–2011), J. Space Weather Space Clim., in press. [Google Scholar]
  • Richardson, I.G., E.W. Cliver, and H.V. Cane, Sources of geomagnetic activity over the solar cycle: Relative importance of CMEs, high-speed streams, and slow solar wind, J. Geophys. Res., 105, 18203, 2000. [Google Scholar]
  • Richardson, I.G., E.W. Cliver, and H.V. Cane, Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000, Geophys. Res. Lett., 28, 2569, 2001. [Google Scholar]
  • Richardson, I.G., H.V. Cane, and E.W. Cliver, Sources of geomagnetic activity during nearly three solar cycles (1972–2000), J. Geophys. Res., 107, 1187, DOI: 10.1029/2001JA000504, 2002. [CrossRef] [Google Scholar]
  • Richardson, I.G., D.F. Webb, J. Zhang, D.B. Berdichevsky, D.A. Biesecker, J.C. Kasper, et al., Major geomagnetic storms (Dst ≤ −100 nT) generated by corotating interaction regions, J. Geophys. Res., 111, A07S09, DOI: 10.1029/2005JA011476, 2006. [Google Scholar]
  • Robbrecht, E., D. Berghmans, and R.A.M. Van der Linden, Automated LASCO CME catalog for solar cycle 23: Are CMEs scale invariant? Astrophys. J., 691, 1222–1234, DOI: 10.1088/0004-637X/691/2/1222, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Rostoker, G., Geomagnetic indices, Rev. Geophys., 10, 935, DOI: 10.1029/RG010i004p00935, 1972. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., and W.D. Gonzalez, The interplanetary causes of magnetic storms: A review, in Magnetic Storms, ed. B.T. Tsurutani, W.D. Gonzalez, Y. Kamide, and J.K. Arballo, A.G.U. Geophys. Monogr. Ser., Vol. 98, Washington, D.C., AGU, 77, 1997. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., E. Echer, F.G. Guarnieri, and W.D. Gonzalez, The properties of two solar wind high speed streams and related geomagnetic activity during the declining phase of solar cycle 23, J. Atmos. Sol. Terr. Phys., 73, 164, DOI: 10.1016/j.jastp.2010.04.003, 2011a. [Google Scholar]
  • Tsurutani, B.T., E. Echer, and W.D. Gonzalez, The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF Bz variances, low solar wind speeds and low solar magnetic fields, Ann. Geophys., 29, 839, DOI: 10.5194/angeo-29-839-2011, 2011b. [Google Scholar]
  • Webb, D.F., and R.A. Howard, The solar cycle variation of coronal mass ejections and the solar wind mass flux, J. Geophys. Res., 99, 4201, 1994. [NASA ADS] [CrossRef] [Google Scholar]
  • Wimmer-Schweingruber, R.F., N.U. Crooker, A. Balogh, V. Bothmer, R.J. Forsyth, et al., Understanding interplanetary coronal mass ejection signatures, Space Sci. Rev., 123, 177–216, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Yashiro, S., N. Gopalswamy, G. Michalek, O.C. St. Cyr, S.-P. Plunkett, et al., A catalog of white light coronal mass ejections observed by the SOHO spacecraft, J. Geophys. Res., 109, A07105, DOI: 10.1029/2003JA010282, 2004. [Google Scholar]
  • Zhang, J., I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, et al., Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–-2005, J. Geophys. Res., 112, A12105, DOI: 10.1029/2007JA012332, 2007. [CrossRef] [Google Scholar]
  • J.B., Zirker, (ed.), Coronal Holes and High Speed Wind Streams, Skylab Solar Workshop, Colorado University Press, Boulder, CO, 1977. [Google Scholar]
  • Zurbuchen, T.H., and I.G. Richardson, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections, Space Sci. Rev., 123, 31–43, 2006. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.