J. Space Weather Space Clim.
Volume 2, 2012
EU-FP7 funded space weather projects
Article Number A16
Number of page(s) 10
Published online 25 September 2012
  • Adam, W., E. Berdermann, P. Bergonzo, W. de Boer, F. Bogani, et al., New developments in CVD diamond for detector applications, Eur. Phys. J. C – Part. Fields, 33, s1014–s1016, DOI: 10.1140/epjcd/s2004-03-1798-6, 2004. [CrossRef] [EDP Sciences] [Google Scholar]
  • Amblard, P.-O., S. Moussaoui, T. Dudok de Wit, J. Aboudarham, M. Kretzschmar, J. Lilensten, and F. Auchère, The EUV Sun as the superposition of elementary Suns, A&A, 487, L13–L16, 2008. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Auchère, F., J. Rizzi, A. Philippon, and P. Rochus, Minimization of the shadow patterns produced by periodic mesh grids in extreme ultraviolet telescopes, J. Opt. Soc. Am. A, 28, 40–45, 2011. [Google Scholar]
  • Balducci, A., M. Marinelli, E. Milani, M.E. Morgada, A. Tucciarone, G. Verona-Rinati, M. Angelone, and M. Pillon, Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition, Appl. Phys. Lett., 86 (19), 193509, 2005. [CrossRef] [Google Scholar]
  • Béniguel, Y., and P. Hamel, A global ionosphere scintillation propagation model for equatorial regions, J. Space Weather Space Clim., 1, A04, 2006. [CrossRef] [EDP Sciences] [Google Scholar]
  • BenMoussa, A., J.F. Hochedez, U. Schühle, W. Schmutz, K. Haenen, et al., Diamond detectors for LYRA, the solar VUV radiometer on board PROBA2, Diamond Rel. Mater., 15 (48), 802–806, 2006. [CrossRef] [Google Scholar]
  • BenMoussa, A., J.F. Hochedez, R. Dahal, J. Li, J.Y. Lin, H.X. Jiang, A. Soltani, J.-C. De Jaeger, U. Kroth, and M. Richter, Characterization of AlN metal-semiconductor-metal diodes in the spectral range of 44–360 nm: photoemission assessments, Appl. Phys. Lett., 92 (2), 022108, 2008. [CrossRef] [Google Scholar]
  • BenMoussa, A., A. Soltani, U. Schühle, K. Haenen, Y.M. Chong, et al., Recent developments of wide-bandgap semiconductor based UV sensors, Diamond Rel. Mater., 18 (5–8), 864, Proceedings of Diamond 2008, the 19th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide, 2009a. [Google Scholar]
  • BenMoussa, A., I.E. Dammasch, J.-F. Hochedez, U. Schühle, S. Koller, et al., Pre-flight calibration of LYRA, the solar VUV radiometer on board PROBA2, A&A, 508, 1085–1094, 2009b. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Butun, S., T. Tut, B. Butun, M. Gokkavas, H. Yu, and E. Ozbay, Deep-ultraviolet Al0.75Ga0.25N photodiodes with low cutoff wavelength, Appl. Phys. Lett., 88 (12), 123503, 2006. [CrossRef] [Google Scholar]
  • Cessateur, G., Reconstruction du spectre UV solaire en vue de la caractérisation des environnements planétaires, Ph.D. thesis, Université d’Orléans, 2011, October [in French]. [Google Scholar]
  • Cessateur, G., T. Dudok de Wit, M. Kretzschmar, J. Lilensten, J.-F. Hochedez, and M. Snow, Monitoring the solar UV irradiance spectrum from the observation of a few passbands, A&A, 528, A68+, 2011. [CrossRef] [EDP Sciences] [Google Scholar]
  • Chamberlin, P.C., T.N. Woods, and F.G. Eparvier, Flare irradiance spectral model (FISM): Flare component algorithms and results, Space Weather, 6, 5001+, 2008. [Google Scholar]
  • Chatfield, C., and A.J. Collins, Introduction to Multivariate Analysis, Chapman and Hall, London, 1990. [Google Scholar]
  • Crane, P.C., L.E. Floyd, J.W. Cook, L.C. Herring, E.H. Avrett, and D.K. Prinz, The center-to-limb behavior of solar active regions at ultraviolet wavelengths, A&A, 419, 735–746, 2004. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Dahal, R., T.M. Tahtamouni Al, Z.Y. Fan, J.Y. Lin, and H.X. Jiang, Hybrid AlN-SiC deep ultraviolet Schottky barrier photodetectors, Appl. Phy. Lett., 90 (26), 263505, 2007. [CrossRef] [Google Scholar]
  • Domingo, V., I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, et al., Solar surface magnetism and irradiance on time scales from days to the 11-year cycle, Space Sci. Rev., 145, 337–380, 2009. [Google Scholar]
  • Dominique, M., A.V. Mitrofanov, J.-F. Hochedez, P. Yu. Apel, U. Schühle, et al., Track membranes with open pores used as diffractive filters for space-based x-ray and EUV solar observations, Appl. Opt., 48, 834–841, 2009. [CrossRef] [Google Scholar]
  • Dominique, M., J.-F. Hochedez, W. Schmutz, I.E. Dammasch, A.I. Shapiro, M.A. Kretzschmar, D. Benmoussa Gillotay, and Y. Stockman, The LYRA instrument on-board PROBA2: description and in-flight performances, Sol. Phys., Submitted, 2012. [Google Scholar]
  • Donnelly, R.F., and L.C. Puga, Thirteen-day periodicity and the center-to-limb dependence of UV, EUV, and X-ray emission of solar activity, 130, 369–390, 1990. [Google Scholar]
  • Dudok de Wit, T., J. Lilensten, J. Aboudarham, P.-O. Amblard, and M. Kretzschmar, Retrieving the solar EUV spectrum from a reduced set of spectral lines, Ann. Geophys., 23, 3055–3069, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Dudok de Wit, T., M. Kretzschmar, J. Lilensten, and T. Woods, Finding the best proxies for the solar UV irradiance, Geophys. Res. Lett., 36, 10107+, 2009. [CrossRef] [Google Scholar]
  • Floyd, L., Filter responsivity degradation caused by solar UV exposure, Adv. Space Res., 23, 1459–1462, 1999. [Google Scholar]
  • Floyd, L., J. Newmark, J. Cook, L. Herring, and D. McMullin, Solar EUV and UV spectral irradiances and solar indices, J. Atmos. Sol.-Terr. Phys., 67, 3–15, 2005. [Google Scholar]
  • Fox, N., A. Kaiser-Weiss, W. Schmutz, K. Thome, D. Young, B. Wielicki, R. Winkler, and E. Woolliams, Accurate radiometry from space: an essential tool for climate studies, Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci., 369 (1953), 4028–4063, 2011. [Google Scholar]
  • Golub, G.H., and C.F. Van Loan, Matrix Computations, Johns Hopkins Press, Baltimore, 2000. [Google Scholar]
  • Haigh, J.D., A.R. Winning, R. Toumi, and J.W. Harder, An influence of solar spectral variations on radiative forcing of climate, Nature, 467, 696–699, 2010. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Heath, D.F., and B.M. Schlesinger, The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance, J. Geophys. Res., 91, 8672–8682, 1986. [NASA ADS] [CrossRef] [Google Scholar]
  • Hinteregger, H.E., Representations of solar EUV fluxes for aeronomical applications, Adv. Space Res., 1, 39–52, 1981. [Google Scholar]
  • Hochedez, J.-F., W. Schmutz, Y. Stockman, U. Schühle, A. Benmoussa, et al., LYRA, a solar UV radiometer on Proba2, Adv. Space Res., 37, 303–312, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Keister, J.W., and J. Smedley, Single crystal diamond photodiode for soft X-ray radiometry, Nucl. Instrum. Methods Phys. Res., A: Accel. Spectrom. Detect. Assoc. Equip., 606 (3), 774–779, 2009. [CrossRef] [Google Scholar]
  • Klochkova, V.G., E.L. Chentsov, T. Kipper, V.E. Panchuk, N.S. Tavolganskaya, and M.V. Yushkin, An atlas of ground UV spectra of selected stars, Astrophys. Space Sci., 335, 83–89, 2011. [CrossRef] [Google Scholar]
  • Kretzschmar, M., J. Lilensten, and J. Aboudarham, Variability of the EUV quiet Sun emission and reference spectrum using SUMER, A&A, 419, 345–356, 2004. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Kretzschmar, M., J. Lilensten, and J. Aboudarham, Retrieving the solar EUV spectral irradiance from the observation of 6 lines, Adv. Space Res., 37, 341–346, 2006. [Google Scholar]
  • Kretzschmar, M., T. Dudok de Wit, J. Lilensten, J.-F. Hochedez, J. Aboudarham, P.-O. Amblard, F. Auchère, and S. Moussaoui, Solar EUV/FUV irradiance variations: analysis and observational strategy, Acta Geophys., 57, 42–51, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Krivova, N.A., and S.K. Solanki, Models of solar irradiance variations: current status, J. Astrophys. Astron., 29, 151–158, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Lean, J.L., H.P. Warren, J.T. Mariska, and J. Bishop, A new model of solar EUV irradiance variability 2. Comparisons with empirical models and observations and implications for space weather, J. Geophys. Res. (Space Phys.), 108, 1059+, 2003. [CrossRef] [Google Scholar]
  • Lean, J.L., T.N. Woods, F.G. Eparvier, R.R. Meier, D.J. Strickland, J.T. Correira, and J.S. Evans, Solar extreme ultraviolet irradiance: present, past, and future, J. Geophys. Res. (Space Phys.), 116, A01102, 2011. [CrossRef] [Google Scholar]
  • Li, J., Z.Y. Fan, R. Dahal, M.L Nakarmi, J.Y. Lin, and H.X. Jiang, 200 nm deep ultraviolet photodetectors based on AlN, Appl. Phys. Lett., 89 (21), 213510, 2006. [CrossRef] [Google Scholar]
  • Liao, M., Y. Koide, and J. Alvarez, Single Schottky-barrier photodiode with interdigitated-finger geometry: Application to diamond, Appl. Phys. Lett., 90 (12), 123507, 2007. [CrossRef] [Google Scholar]
  • Lilensten, J., T. Dudok de Wit, P.-O. Amblard, J. Aboudarham, F. Auchère, and M. Kretzschmar, Recommendation for a set of solar EUV lines to be monitored for aeronomy applications, Ann. Geophys., 25 (6), 1299–1310, 2007. [Google Scholar]
  • Lilensten, J., T. Dudok de Wit, M. Kretzschmar, P.-O. Amblard, S. Moussaoui, J. Aboudarham, and F. Auchère, Review on the solar spectral variability in the EUV for space weather purposes, Ann. Geophys., 26, 269–279, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Mikhailov, A.V, A. Belehaki, L. Perrone, B. Zolesi, and I. Tsagouri, Retrieval of thermospheric parameters from routine ionospheric observations: assessment of method’s performance at mid-latitudes daytime hours, J. Space Weather Space Clim., 2, A03, 2012. [CrossRef] [EDP Sciences] [Google Scholar]
  • Monroy, E., F. Calle, E. Muoz, F. Omns, B. Beaumont, and P. Gibart, Visible-blindness in photoconductive and photovoltaic AlGaN ultraviolet detectors, J. Electron. Mater., 28, 240–245, DOI: 10.1007/s11664-999-0021-21999. [CrossRef] [Google Scholar]
  • Nesladek, M., Conventional n-type doping in diamond: state of the art and recent progress, Semicond. Sci. Technol., 20 (2), R19, 2005. [CrossRef] [Google Scholar]
  • Osantowski, J.F., R.A.M. Keski-Kuha, H. Herzig, A.R. Toft, J.S. Gum, and C.M. Fleetwood, Optical coating technology for the EUV, Adv. Space Res., 11, 185–201, 1991. [CrossRef] [Google Scholar]
  • Podladchikova, T., and R. Van der Linden, An upper limit prediction of the peak sunspot number for solar cycle 24, J. Space Weather Space Clim., 1, A01, 2011. [CrossRef] [EDP Sciences] [Google Scholar]
  • Richards, P.G., J.A. Fennelly, and D.G. Torr, EUVAC: a solar EUV flux model for aeronomic calculations, J. Geophys. Res., 99, 8981–8992, 1994. [Google Scholar]
  • Richards, P.G., T.N. Woods, and W.K. Peterson, HEUVAC: A new high resolution solar EUV proxy model, Adv. Space Res., 37, 315–322, 2006. [Google Scholar]
  • Rottman, G., The SORCE mission, Sol. Phys., 230, 7–25, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Saito, T., K. Hayashi, H. Ishihara, and I. Saito, Characterization of photoconductive diamond detectors as a candidate of FUV/VUV transfer standard detectors, Metrologia, 43 (2), S51, 2006. [CrossRef] [Google Scholar]
  • Saito, T., T. Hitora, H. Hitora, H. Kawai, I. Saito, and E. Yamaguchi, UV/VUV photodetectors using group III-nitride semiconductors, Phys. Stat. Sol. C, 6 (S2), S658–S661, 2009. [CrossRef] [Google Scholar]
  • Sigernes, F., M. Dyrland, P. Brekke, S. Chernouss, D.A. Lorentzen, K. Oksavik, and C. Sterling Deehr, Two methods to forecast auroral displays, J. Space Weather Space Clim., 1, A03, 2011. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sio, A, J. De Achard, J. De Achard, A. Tallaire, R.S. Sussmann, A.T. Collins, F. Silva, and E. Pace, Electro-optical response of a single-crystal diamond ultraviolet photoconductor in transverse configuration, Appl. Phys. Lett., 86 (21), 213504, 2005. [CrossRef] [Google Scholar]
  • Soltani, A., H.A. Barkad, M. Mattalah, B. Benbakhti, J.-C. De Jaeger, 193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors, Appl. Phys. Lett., 92 (5), 053501, 2008. [CrossRef] [Google Scholar]
  • Sou, I.K., C.W. Wu Marcus, T. Sun, K.S. Wong, and G.K.L. Wong, Molecular-beam-epitaxy-grown ZnMgS ultraviolet photodetectors, Appl. Phys. Lett., 78 (13), 1811–1813, 2001. [CrossRef] [Google Scholar]
  • Sreeja, V., M. Aquino, B. Forte, Z. Elmas, C. Hancock, et al., Tackling ionospheric scintillation threat to GNSS in Latin America, J. Space Weather Space Clim., 1, A05, 2011. [CrossRef] [EDP Sciences] [Google Scholar]
  • Tapping, K.F., and B. Detracey, The origin of the 10.7 CM flux, Sol. Phys., 127, 321–332, 1990. [Google Scholar]
  • Tobiska, W., and A. Nusinov, ISO 21348 – process for determining solar irradiances, Pages 2621–+ of: 36th COSPAR Scientific Assembly, 36, COSPAR, Plenary Meeting, 2006. [Google Scholar]
  • Tobiska, W.K., T. Woods, F. Eparvier, R. Viereck, L. Floyd, D. Bouwer, G. Rottman, and O.R. White, The SOLAR2000 empirical solar irradiance model and forecast tool, J. Atmos. Sol.-Terr. Phys., 62, 1233–1250, 2000. [Google Scholar]
  • Tsagouri, I., Evaluation of the performance of DIAS ionospheric forecasting models, J. Space Weather Space Clim., 1, A02, 2011. [CrossRef] [EDP Sciences] [Google Scholar]
  • Tsurutani, B.T., O.P. Verkhoglyadova, A.J. Mannucci, G.S. Lakhina, and J.D. Huba, Extreme changes in the dayside ionosphere during a Carrington-type magnetic storm, J. Space Weather Space Clim., 2, A05, 2012. [CrossRef] [EDP Sciences] [Google Scholar]
  • Vieira, L.E., T. Dudok de Wit, and M. Kretzschmar, Short-term forecast of the total and spectral solar irradiance, J. Space Weather Space Clim., Submitted, 2012. [Google Scholar]
  • Warren, H.P., J.T. Mariska, and J. Lean, A new reference spectrum for the EUV irradiance of the quiet Sun 1. Emission measure formulation, J. Geophys. Res., 103, 12077–12090, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Wehrli, C., C. Fröhlich, and J. Romero, Space degradation of SOVA sunphotometers on EURECA, Metrologia, 32, 653–656, 1996. [Google Scholar]
  • Woods, T.N., F.G. Eparvier, S.M. Bailey, P.C. Chamberlin, J. Lean, G.J. Rottman, S.C. Solomon, W.K. Tobiska, and D.L. Woodraska, Solar EUV Experiment (SEE): Mission overview and first results, J. Geophys. Res. (Space Phys.), 110, 1312+, 2005. [CrossRef] [Google Scholar]
  • Woods, T.N., F.G. Eparvier, R. Hock, A.R. Jones, D. Woodraska, et al., Extreme ultraviolet variability experiment (EVE) on the solar dynamics observatory (SDO): overview of science objectives, instrument design, data products, and model developments, Sol. Phys., 275 (1–2), 115–143, 2010. [Google Scholar]
  • Worden, J.R., O.R. White, and T.N. Woods, Evolution of chromospheric structures derived from Ca II K spectroheliograms: implications for solar ultraviolet irradiance variability, Astrophys. J., 496, 998+, 1998. [Google Scholar]
  • Wright, N.G., and A.B. Horsfall, SiC sensors: a review, J. Phys. D: Appl. Phys., 40 (20), 6345, 2007. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.