COST Action ES0803
Open Access
Issue
J. Space Weather Space Clim.
Volume 3, 2013
COST Action ES0803
Article Number A26
Number of page(s) 20
DOI https://doi.org/10.1051/swsc/2013048
Published online 29 July 2013
  • Aguado, J., C. Cid, E. Saiz, and Y. Cerrato, Hyperbolic decay of the Dst index during the recovery phase of intense geomagnetic storms, J. Geophys. Res., 115, A07220, DOI: 10.1029/2009JA014658, 2010. [CrossRef] [Google Scholar]
  • Amory-Mazaudier, C., Sun Earth’s System: the transient variations of the Earth’s magnetic field. Edited by A. Hady, and M.I. Wanas, First Middle East-Africa, Regional IAU Meeting, Proceedings MEARIM, 1, 236–270, DOI: 10.1017/97740330200173, 2008. [Google Scholar]
  • Andreasen, G., Reconstruction of past solar wind variations: inversion of the geomagnetic response at Godhavn, J. Geophys. Res., 102, A4, 7025–7036, 1997. [CrossRef] [Google Scholar]
  • Baumjohann, W., and R.A. Treumann, Basic Space Plasma Physics, Covent Garden, London: Imperial College Press, 103–128, ISBN: 1-86094-079-X, 1997. [Google Scholar]
  • Boberg, F., P. Wintoft, and H. Lundstedt, Real time Kp predictions from solar wind data using neural networks, Phys. Chem. Earth, 25, 275–280, 2000. [CrossRef] [Google Scholar]
  • Bochníček, J., and P. Hejda, Areas of minimum intensity of soft X-rays as sources of solar wind high-speed streams, J. Atmos. Sol. Terr. Phys., 64, 511–515, 2002. [CrossRef] [Google Scholar]
  • Bochníček, J., P. Hejda, and F. Valach, Solar energetic events in the years 1996–2004. The analysis of their geoeffectiveness, Stud. Geophys. Geod., 51 (3), 439–447, DOI: 10.1007/s11200-007-0025-4, 2007. [CrossRef] [Google Scholar]
  • Bogdanova, Y.V., et al., Formation of the low-latitude boundary layer and cusp under the northward IMF: simultaneous observations by Cluster and Double Star, J. Geophys. Res., 113, A07S07, 1–33, DOI: 10.1029/2007JA012762, 2008. [CrossRef] [Google Scholar]
  • Borovsky, J.E., and M.H. Denton, Differences between CME-driven storms and CIR-driven storms, J. Geophys. Res., 111, A07S08, DOI: 10.1029/2005JA011447, 2006. [CrossRef] [Google Scholar]
  • Burton, R.K., R.L. McPherron, and C.T. Russell, An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80 (31), 4204–4214, DOI: 10.1029/JA080i031p04204, 1975. [NASA ADS] [CrossRef] [Google Scholar]
  • Caballero-Lopez, R., A.H. Moraal, K.G. McCracken, and F.B. McDonald, The heliospheric magnetic field from 850 to 2000 AD inferred from 10Be records, J. Geophys. Res., 109, A12102, DOI: 10.1029/2004JA010633, 2004. [NASA ADS] [CrossRef] [Google Scholar]
  • Campbell, W.H., Introduction to geomagnetic fields, 2nd Edn., Cambridge, UK: Cambridge University Press, 337 pp., 2003. [Google Scholar]
  • Cane, H.V., R.G. Stone, J. Fainberg, J.L. Steinberg, and S. Hoang, Type II solar radio events observed in the interplanetary medium I: general characteristics, Sol. Phys., 78, 187–198, 1982. [NASA ADS] [CrossRef] [Google Scholar]
  • Cerrato, Y., E. Saiz, C. Cid, W. D. Gonzalez, and J. Palacios, Solar and interplanetary triggers of the largest Dst variations of the solar cycle 23, J. Atmos. Sol. Terr. Phys., 80, 111–123, DOI: 10.1016/j.jastp.2011.09.001, 2011. [CrossRef] [Google Scholar]
  • Chisham, G., M.P. Freeman, T. Sotirelis, R.A. Greenwald, M. Lester, and J.-P. Villain, A statistical comparison of SuperDARN spectral width boundaries and DMSP particle precipitation boundaries in the morning sector ionosphere, Ann. Geophys., 23, 733–743, DOI: 10.5194/angeo-23-733-2005, 2005. [CrossRef] [Google Scholar]
  • Chun, F.K., D.J. Knipp, M. G. McHarg, G. Lu, B.A. Emery, S. Vennerstrøm, and O.A. Troshichev, Polar cap index as a proxy for hemispheric Joule heating, Geophys. Res. Lett., 26, 1101–1104, 1999. [CrossRef] [Google Scholar]
  • Cid, C., H. Cremades, A. Aran, C. Mandrini, B. Sanahuja, B. Schmieder, M. Menvielle, L. Rodriguez, E. Saiz, Y. Cerrato, et al., Can a halo CME from the limb be geoeffective, J. Geophys. Res., 117, 25, A11102, DOI: 10.1029/2012JA017536, 2012. [CrossRef] [Google Scholar]
  • Cid, C., J. Palacios, E. Saiz, Y. Cerrato, J. Aguado, and A. Guerrero, Modeling the recovery phase of the extreme geomagnetic storms, J. Geophys. Res., 118, 1–8, DOI: 10.1002/jgra.50409, 2013 (under review). [Google Scholar]
  • Cliver, E.W., V. Boriakoff, and K.H. Bounar, The 22-year cycle of geomagnetic activity, J. Geophys. Res., 101, 27091–27109, 1996. [CrossRef] [Google Scholar]
  • Cliver, E.W., V. Boriakoff, and J. Feynman, Solar variability and climate change: geomagnetic aa index and global surface temperature, Geophys. Res. Lett., 25, 1035–1038, 1998. [CrossRef] [Google Scholar]
  • Clilverd, M.A., E. Clarke, T. Ulich, J. Linthe, and H. Rishbeth, Reconstructing the long-term aa index, J. Geophys. Res., 110, A07205, DOI: 1029/2004JA010, 2005. [CrossRef] [Google Scholar]
  • Crooker, N.U., J.T. Gosling, V. Bothmer, R.J. Forsyth, P.R. Gazis, A. Hewish, T.S. Horbury, D.S. Intriligator, J.R. Jokipii, J. Kóta, et al., Turbulence, discontinuities, and energetic particles, Space Sci. Rev., 89, 179–220, DOI: 10.1023/A:1005253526438, 1999. [NASA ADS] [CrossRef] [Google Scholar]
  • Daglis, I.A., R.M. Thorne, W. Baumjohann, and S. Orsini, The terrestrial ring current: origin, formation, and decay, Rev. Geophys., 37 (4), 407–438, DOI: 10.1029/1999RG900009, 1999. [CrossRef] [Google Scholar]
  • Dasso, S., D. Gómez, and C.H. Mandrini, Ring current decay rates of magnetic storms: a statistical study from 1957 to 1998, J. Geophys. Res., 107 (A5), 1059, DOI: 10.1029/2000JA000430, 2002. [CrossRef] [Google Scholar]
  • Dasso, S., C.H. Mandrini, B. Schmieder, H. Cremades, C. Cid, Y. Cerrato, E. Saiz, P. De’moulin, A.N. Zhukov, L. Rodriguez, A. Aran, M. Menvielle, and S. Poedts, Linking two consecutive nonmerging magnetic clouds with their solar sources, J. Geophys. Res., 114, A02109, DOI: 10.1029/2008JA013102, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • De Keyser, J., M.W. Dunlop, C.J. Owen, B.U.Ö. Sonnerup, S.E. Haaland, A. Vaivads, G. Paschmann, R. Lundin, and L. Rezeau, Magnetopause and Boundary Layer, Space Sci. Rev., 118, 231–320, DOI: 10.1007/s11214-005-3834-1, 2005. [CrossRef] [Google Scholar]
  • De la Beaujardiere, O., R. Johnson, and V.B. Wickwar, , Ground-based measurements of Joule heating rates. Edited by C.-I. Meng, M.J. Rycroft, and L.A. Frank, Auroral Physics, Cambridge, England: Cambridge University Press, 436–448, ISBN-13: 9780521157414, 1991. [Google Scholar]
  • Demetrescu, C., and V. Dobrica, Signature of Hale and Gleissberg solar cycles in the geomagnetic activity, J. Geophys. Res., 113, A02103, DOI: 10.1029/2007JA012570, 2008. [CrossRef] [Google Scholar]
  • Demetrescu, C., V. Dobrica, and G. Maris, On the long-term variability of the heliosphere-magnetosphere environment, Adv. Space Res., 46, 1299–1312, DOI: 10.1016/j.asr.2010.06.032, 2010. [CrossRef] [Google Scholar]
  • Dessler, A.J., and E.N. Parker, Hydromagnetic Theory of Geomagnetic Storms, J. Geophys. Res., 64, 2239–2252, 1959. [CrossRef] [Google Scholar]
  • Du, Z.L., The correlation between solar and geomagnetic activity – Part 2: long-term trends, Ann. Geophys., 29, 1341–1348, DOI: 10.5194/angeo-29-1341-2011, 2011. [CrossRef] [Google Scholar]
  • Du, A.M., B.T. Tsurutani, and W. Sun, Anomalous geomagnetic storm of 21–22 January 2005: a storm main phase during northward IMFs, J. Geophys. Res., 113, A10214, DOI: 10.1029/2008JA013284, 2008. [CrossRef] [Google Scholar]
  • Dungey, J.W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47–48, 1961. [NASA ADS] [CrossRef] [Google Scholar]
  • Dunlop, M.W., Q.-H. Zhang, C.-J. Xiao, J.-S. He, Z. Pu, R.C. Fear, C. Shen, and C.P. Escoubet, Reconnection at high latitudes: antiparallel merging, Phys. Rev. Lett., 102, 075005, 2009. [CrossRef] [Google Scholar]
  • Ebihara, Y., M. Ejiri, and H. Miyaoka, Coulomb lifetime of the ring current ions with time varying plasmasphere, Earth Planets Space, 50 (4), 371–382, 1998. [Google Scholar]
  • Echer, E., W.D. Gonzalez, A.L.C. Gonzalez, A. Prestes, L.E.A. Vieira, A. Dal Lago, F.L. Guarnieri, and N.J. Schuch, Long-term correlation between solar and geomagnetic activity, J. Atmos. Sol. Terr. Phys., 66, 1019–1025, 2004. [CrossRef] [Google Scholar]
  • Eddy, J.A., The case of the missing sunspots, Sci. Am., 236 (5), 80–92, DOI: 10.1038/scientificamerican0577-80, 1977. [NASA ADS] [CrossRef] [Google Scholar]
  • Fejer, B., and L. Scherliess, Empirical models of storm time equatorial zonal electric fields, J. Geophys. Res., 102 (A11), 24047–24056, DOI: 10.1029/97JA02164, 1997. [CrossRef] [Google Scholar]
  • Feldstein, Y.I., and L.A. Dremukhina, On the two‐phase decay of the Dst variation, J. Geophys. Res., 27 (17), 2813–2816, 2000. [Google Scholar]
  • Feynman, J., and N.U. Crooker, The solar wind at the turn of the century, Nature, 275, 626, 1978. [CrossRef] [Google Scholar]
  • Feynman, J., and A. Ruzmaikin, The Sun’s strange behavior: Maunder minimum or Gleissberg cycle?, Sol. Phys., 272 (2), 351–363, DOI: 10.1007/s11207-011-9828-0, 2011. [CrossRef] [Google Scholar]
  • Finch, I., and M. Lockwood, Solar wind-magnetosphere coupling functions on timescales of 1 day to 1 year, Ann. Geophys., 25, 495–506, DOI: 10.5194/angeo-25-495-2007, 2007. [CrossRef] [Google Scholar]
  • Forget, B., J.-C. Cerisier, A. Berthelier, and J.-J. Bertheleier, Ionospheric closure of small-scale Birkeland currents, J. Geophys Res., 96 (A2), 1843–1847, DOI: 10.1029/90JA02376, 1991. [CrossRef] [Google Scholar]
  • Foster, J.C., and F.J. Rich, Prompt mid-latitude electric fields effects during severe geomagnetic storms, J. Geophys. Res., 103 (11), 26367–26372, DOI: 10.1029/97JA03057, 1998. [CrossRef] [Google Scholar]
  • Fuselier, S.A., J. Berchem, K.J. Trattner, and R. Friedel, Tracing ions in the cusp and low-latitude boundary layer using multispacecraft observations and a global MHD simulation, J. Geophys. Res., 107 (A9), 1226, DOI: 10.1029/2001JA000130, 2002. [CrossRef] [Google Scholar]
  • Gleisner, H., and H. Lundstedt, A neural network-based local model for prediction of geomagnetic disturbances, J. Geophys. Res., 106, 8425–8434, 2001. [CrossRef] [Google Scholar]
  • Gleisner, H., and H. Lundstedt, Auroral electrojet predictions with dynamic neural network, J. Geophys. Res., 106, 24541–24550, 2001. [CrossRef] [Google Scholar]
  • Gleisner, H., and J. Watermann, Solar energetic particle flux enhancement as an indicator of halo coronal mass ejection geoeffectivness, Space Weather – Inter. J. Res. Appl., 4, S06006, DOI: 10.1029/2006SW000220, 2006a. [CrossRef] [Google Scholar]
  • Gleisner, H., and J. Watermann, Concepts of medium-range (1–3 days) geomagnetic forecasting. Space weather prediction: applications and validation, Adv. Space Res., 37, 1116–1123, 2006b. [CrossRef] [Google Scholar]
  • Gopalswamy, N., Coronal Mass Ejections and Solar Radio Emissions. Edited by H. Rucker, W. Kurth, P. Louarn, and G. Fischer, Proceedings of the 7th International Workshop on Planetary, Solar and Heliospheric Radio Emissions (PRE VII), , 325–342, ISBN: 978-3-7001-7125-6, 2011. [CrossRef] [Google Scholar]
  • Hamilton, D.C., G. Gloeckler, F.M. Ipavich, W. Stüdemann, B. Wilken, and G. Kremser, Ring current development during the great geomagnetic storm of February 1986, J. Geophys. Res., 93 (12), 14343–14355, DOI: 10.1029/JA093iA12p14343, 1988. [CrossRef] [Google Scholar]
  • Hasegawa, H., et al., Rolled-up Kelvin-Helmholtz vortices and associated solar wind entry at Earth’s magnetopause, Nature, 430, 755–758, 2004. [NASA ADS] [CrossRef] [Google Scholar]
  • Hosokawa, K., E.E. Woodfield, M. Lester, S.E. Milan, N. Sato, A.S. Yukimatu, and T. Iyemori, Interhemispheric comparison of spectral width boundary as observed by SuperDARN radars, Ann. Geophys., 21, 1553–1565, 2003. [CrossRef] [Google Scholar]
  • Hughes, W.J., and M.K. Hudson, Towards an integrated model of the space weather system, J. Atmos. Sol. Terr. Phys., 66, 1241–1242, DOI: 10.1016/j.jastp.2004.06.001, 2004. [CrossRef] [Google Scholar]
  • Imber, S.M., S.E. Milan, and M. Lester, The Heppner-Maynard Boundary measured by SuperDARN as a proxy for the latitude of the auroral oval, J. Geophys. Res. Space Phys., 118, 685–697, DOI: 10.1029/2012JA018222, 2013. [CrossRef] [Google Scholar]
  • Janzhura, A., O.A. Troshichev, and P. Stauning, Unified PC indices: relation to isolated magnetic substorms, J. Geophys. Res., 112, A09207, DOI: 10.1029/2006JA012132, 2007. [CrossRef] [Google Scholar]
  • Johnson, J., and C. Cheng, Kinetic Alfven waves and plasma transport at the magnetopause, Geophys. Res. Lett., 242, 1423, DOI: 10.1029/97GL01333, 1997. [CrossRef] [Google Scholar]
  • Jordanova, V.K., L.M. Kistler, J.U. Kozyra, G.V. Kharanov, and A.F. Nagy, Collisional losses of ring current ions, J. Geophys. Res., 101, 111–126, 1996. [CrossRef] [Google Scholar]
  • Jordanova, V.K., A. Boonsiriseth, R.M. Thorne, and Y. Dotan, Ring current asymmetry from global simulations using a high‐resolution electric field model, J. Geophys. Res., 108 (12), 1443–1443, DOI: 10.1029/2003JA009993, 2003. [CrossRef] [Google Scholar]
  • Kan, J.R., and L.C. Lee, Energy coupling function and solar wind-magnetosphere dynamo, Geophys. Res. Lett., 6 (7), 577–580, DOI: 10.1029/GL006i007p00577, 1979. [NASA ADS] [CrossRef] [Google Scholar]
  • Kelley, M.C., The Earth’s ionosphere: plasma physics and electrodynamics, Intern. Geophys. Ser., San Diego: Academic Press, 1989. [Google Scholar]
  • Kelley, M.C., and J. Retterer, First successful prediction of a convective equatorial ionospheric storm using solar wind parameters, Space Weather, 6, S08003, 4 pp., DOI: 10.1029/2007SW000381, 2008. [CrossRef] [Google Scholar]
  • Kim, R.S., K.S. Cho, Y.J. Moon, Y.H. Kim, Y. Yi, M. Dryer, S.C. Bong, and Y.D. Park, Forecast evaluation of the coronal mass ejection (CME) geoeffectiveness using halo CMEs from 1997 to 2003, J. Geophys. Res., 110, A11104, DOI: 10.1029/2005JA011218, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Kosugi, T., and K. Shibata, Solar coronal dynamics and flares as a cause of interplanetary disturbances, in Magnetic Storms. Edited by B.T. Tsurutani, W.D. Gonzalez, Y. Kamide, and J.K. Arballo, Geophysical Monograph, 98, Washington D.C: AGU Press, 21–34, 1997. [CrossRef] [Google Scholar]
  • Kozyra, J.U., and M.W. Liemohn, Ring current energy input and decay, Space Sci. Rev., 109, 105–131, DOI: 10.1023/B: SPAC.0000007516.10433.ad, 2003. [CrossRef] [Google Scholar]
  • Kozyra, J.U., V.K. Jordanova, R.B. Home, and R.M. Thorne, Magnetic Storms. Edited by B.T. Tsurutani, et al., Geophys. Monogr. Ser., Vol. 98, Washington DC: AGU, DOI: 10.1029/GM098, ISSN: 0065-8448; ISBN: 0-87590-080-1, 187–202 1997. [CrossRef] [Google Scholar]
  • Kozyra, J.U., M.-C. Fok, E.R. Sanchez, D.S. Evans, D.C. Hamilton, and A.F. Nagy, The role of precipitation losses in producing the rapid early recovery phase of the great magnetic storm of February 1986, J. Geophys. Res., 103 (A4), 6801–6814, DOI: 10.1029/97JA03330, 1998. [CrossRef] [Google Scholar]
  • Kozyra, J.U., M.W. Liemohn, C.R. Clauer, A.J. Ridley, M.F. Thomsen, J.E. Borovsky, J.L. Roeder, V.K. Jordanova, and W.D. Gonzalez, Multistep Dst development and ring current composition changes during the 4–6 June 1991 magnetic storm, J. Geophys. Res., 107 (8), 1224, DOI: 10.1029/2001JA000023, 2002. [CrossRef] [Google Scholar]
  • Krivova, N.A., L. Balmaceda, and S.K. Solanki, Reconstruction of solar total irradiance since 1700 from the surface magnetic flux, A&A, 467, 335–346, DOI: 10.1051/0004-6361:20066725, 2007. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Kuklin, G.V., Cyclical and secular variations of solar activity. Edited by V. Bumba, and J. Kleczek, Basic mechanisms of solar activity, IAU Symposium No. 71, Dordrecht-Holland/Boston, USA: D. Reidel Publishing Company, 147–190, ISBN-10: 9027706808, ISBN-13: 9789027706805, 1976. [CrossRef] [Google Scholar]
  • Lavraud, B., M.F. Thomsen, B. Lefebvre, S.J. Schwartz, K. Seki, T.D. Phan, Y.L. Wang, A. Fazakerley, H. Rème, and A. Balogh, Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF, J. Geophys. Res., 111, A05211, DOI: 10.1029/2005JA011266, 2006. [CrossRef] [Google Scholar]
  • Le Mouël, J.-L., V. Kossobokov, and V. Courtillot, On long-term variations of simple geomagnetic indices and slow changes in magnetospheric currents: the emergence of anthropogenic global warming after 1990?, Earth Planet. Sci. Lett., 232, 273–286, 2005. [CrossRef] [Google Scholar]
  • Lean, J., Evolution of the Sun’s spectral irradiance since the Maunder Minimum, Geophys. Res. Lett., 22, 2425–2428, 2000. [NASA ADS] [CrossRef] [Google Scholar]
  • Lean, J., J. Beer, and R. Bradley, Reconstruction of solar irradiance since 1610: implications for climate change, Geophys. Res. Lett., 22, 3195–3198, 1995. [NASA ADS] [CrossRef] [Google Scholar]
  • Lester, M., S.E. Millan, G. Provan, and J.A. Wild, Review of the ionospheric effects of solar wind magnetosphere coupling in the context of the expanding contracting polar cap boundary model, Space Sci. Rev., 124, 117–130, 2006. [CrossRef] [Google Scholar]
  • Liemohn, M.W., and J.U. Kozyra, Testing the hypothesis that charge exchange can cause a two‐phase decay. Edited by M. Burch, J.L. Burch, M. Schulz, and H. Spence, Inner Magnetosphere Interactions: New Perspectives from imaging, 159, Washington, D.C: AGU, Geophys. Monogr. Ser., ISBN: 978-0-87590-424-5, 67–178, 2005. [CrossRef] [Google Scholar]
  • Liemohn, M.W., J.U. Kozyra, C.R. Clauer, and A.J. Ridley, Computational analysis of the near-Earth magnetospheric current system during two-phase decay storms, J. Geophys. Res., 106 (A12), 29531–29542, DOI: 10.1029/2001JA000045, 2001. [CrossRef] [Google Scholar]
  • Lockwood, M., R. Stamper, and M.N. Wild, A doubling of the Sun’s coronal magnetic field during the past 100 years, Nature, 399, 437–439, 1999. [NASA ADS] [CrossRef] [Google Scholar]
  • Lockwood, M., A.P. Rouillard, and I.D. Finch, The rise and fall of open solar flux during the current grand solar maximum, Astrophys. J., 700, 937–944, DOI: 10.1088/004-637x/700/2/937, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Lopez, R.E., M. Wiltberger, S. Hernandez, and J.G. Lyon, Solar wind density control of energy transfer to the magnetosphere, Geophys. Res. Lett., 31, L08804, DOI: 10.1029/2003GL018780, 2004. [CrossRef] [Google Scholar]
  • Lundstedt, H., P. Wintoft, H. Gleisner, F. Boberg, T. Hasanov, and I. Kronfeldt, Forecasting space weather and effects using knowledge-based neurocomputing. In: Proceedings of Space Weather Workshop: Looping Towards a European Space Weather Programme, Noordwijk, The Netherlands: ESA Publishing Division, 179–184, WPP-194, 2002a. [Google Scholar]
  • Lundstedt, H., H. Gleisner, and P. Wintoft, Operational forecasts of geomagnetic Dst index, Geophys. Res. Lett., 29, 2181–2181, DOI: 10.1029/2002GL016151, 2002b. [CrossRef] [Google Scholar]
  • Marcucci, M.F., I. Coco, D. Ambrosino, E. Amata, S.E. Milan, M.B. Bavassano Cattaneo, and A. Retinò, Extended SuperDARN and IMAGE observations for northward IMF: evidence for dual lobe reconnection, J. Geophys. Res., 113, 1–12, A02204, DOI: 10.1029/2007JA012466, 2008. [CrossRef] [Google Scholar]
  • Masters, A., D.G. Mitchell, A.J. Coates, and M.K. Dougherty, Saturn’s low‐latitude boundary layer: 1. Properties and variability, J. Geophys. Res., 116, 1–13, A06210, DOI: 10.1029/2010JA016421, 2011. [Google Scholar]
  • McCracken, K.G., Heliomagnetic field near Earth, 1428–2005, J. Geophys. Res., 112, A09106, DOI: 10.1029/2006JA012119, 2007. [CrossRef] [Google Scholar]
  • Menvielle, M., Geomagnetic indices in Geomagnetic Observations and Models. Edited by M. Mandea, and M. Korte, IAGA Special Sopron Book Series, Vol. 5, Springer Science+Business Media, 183–228, ISBN: 978-90-481-9857-3, DOI: 10.1007/978-90-481-9858-0_8, 2011. [Google Scholar]
  • Monreal MacMahon, R., and C. Llop, Ring current decay time model during geomagnetic storms: a simple analytical approach, Ann. Geophys., 26, 2543–2550, 2008. [CrossRef] [Google Scholar]
  • Mursula, K., I.G. Usoskin, and G.A. Kovaltsov, Persistent 22-year cycle in sunspot activity: evidence for a relic solar magnetic field, Sol. Phys., 198, 51–56, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • Mursula, K., D. Martini, and A. Karinen, Did open solar magnetic field increase during the last 100 years? A reanalysis of geomagnetic activity, Sol. Phys., 224, 85–94, 2004. [CrossRef] [Google Scholar]
  • Nelson, G.J., and D.B. Melrose, Type II bursts. Edited by D.J. MacLean, and N.R. Labrum, Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths (A87–13851 03–92), New York: Cambridge Univ. Press, 333–359, ISBN: 978–0521254090, 1985. [Google Scholar]
  • Nenovski, P., Comparison of simulated and observed large-scale field-aligned current structures, Ann. Geophys., 26 (2), 281–293, 2008. [CrossRef] [Google Scholar]
  • O’Brien, T.P., and R.L. McPherron, An empirical phase space analysis of ring current dynamics: solar wind control of injection and decay, J. Geophys. Res., 105 (4), 7707–7719, DOI: 10.1029/1998JA000437, 2000. [CrossRef] [Google Scholar]
  • Oksavik, K., F. Søraas, J. Moen, and W.J. Burke, Optical and particle signatures of magnetospheric boundary layers near magnetic noon: satellite and ground-based observations, J. Geophys. Res., 105 (A12), 27555–27568, DOI: 101029/1999JA000237, 2000. [CrossRef] [Google Scholar]
  • Phan, T.-D., M. Oieroset, and M. Fujimoto, Reconnection at the dayside low-latitude magnetopause and its nonrole in low-latitude boundary layer formation during northward interplanetary magnetic field, Geophys. Res. Lett., 32, 1–2, DOI: 10.1029/2005GL023355, 2005. [CrossRef] [Google Scholar]
  • Pick, M., T.G. Forbes, G. Mann, H.V. Cane, J. Chen, A. Ciaravella, H. Cremades, R.A. Howard, H.S. Hudson, A. Klassen, et al., Multi-Wavelength Observations of CMEs and Associated Phenomena, Report of Working Group F, Space Sci. Rev., 123, 341, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Prölss, G.W., Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes, J. Geophys. Res., 98, 5981–5991, DOI: 10.1029/92JA02777, 1993. [CrossRef] [Google Scholar]
  • Rangarajan, G.K., Indices of geomagnetic activity. Edited by J.A. Jacobs, Geomagnetism, Vol. 3, London: Academic Press, 385–460, 1989. [Google Scholar]
  • Reiner, M.J., M.L. Kaiser, J. Fainberg, J.-L. Bougeret, and R.G. Stone, On the origin of radio emissions associated with the January 6-11, 1997, CME, Geophys. Res. Lett., 25 (14), 2493–2496, DOI: 10.1029/98GL00138, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Richardson, I.G., and H.V. Cane, Solar wind drivers of geomagnetic storms during more than four solar cycles, J. Space Weather Space Clim., 2, A01, DOI: 10.1051/swsc/2012001, 2012a. [CrossRef] [EDP Sciences] [Google Scholar]
  • Richardson, I.G., and H.V. Cane, Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011), J. Space Weather Space Clim., 2, A02, DOI: 10.1051/swsc/2012003, 2012b. [CrossRef] [EDP Sciences] [Google Scholar]
  • Richardson, I.G., H.V. Cane, and E.W. Cliver, Sources of geomagnetic activity during nearly three solar cycles (1972–2000), J. Geophys. Res., 107, A8, DOI: 10.1029/2001JA00054, 2002. [Google Scholar]
  • Robbrecht, E., and D. Berghmans, A broad perspective on automated CME tracking: towards higher level space weather forecasting. Edited by N. Gopalswamy, R. Mewaldt, and J. Torsti, Solar Eruptions and Energetic Particles, 165, Washington D.C: AGU Press, Geophysical Monograph Series, 33–41, 2006. [CrossRef] [Google Scholar]
  • Rodriguez, L., A.N. Zhukov, C. Cid, Y. Cerrato, E. Saiz, H. Cremades, S. Dasso, M. Menvielle, A. Aran, C. Mandrini, et al., Three frontside full halo coronal mass ejections with a nontypical geomagnetic response, Space Weather, 7, S06003, DOI: 10.1029/2008SW000453, 2009. [CrossRef] [Google Scholar]
  • Rouillard, A.P., M. Lockwood, and I. Finch, Centennial changes in the solar wind speed and in the open solar flux, J. Geophys. Res., 112, A05103, DOI: 10.1029/2006JA012130, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Šafránková, J., Z. Němeček, L. Přech, J. Šimůnek, D. Sibeck, and J.-A. Sauvaud, Variations of the flank LLBL thickness as response to the solar wind dynamic pressure and IMF orientation, J. Geophys. Res., 112, A07201, DOI: 10.1029/2006JA011889., 2007. [CrossRef] [Google Scholar]
  • Saiz, E., C. Cid, and Y. Cerrato, Forecasting intense geomagnetic activity using interplanetary magnetic field data, Ann. Geophys., 26, 3989–3998, 2008. [CrossRef] [Google Scholar]
  • Schunk, R.W., and L. Zhu, Response of the ionosphere-thermosphere system to magnetospheric processes, J. Atmos. Solar Terr. Phys., 70 (18), 2358–2373, DOI: 10.1016/j.jastp.2008.07.003, 2008. [CrossRef] [Google Scholar]
  • Schwenn, R., Space weather: the solar perspective, Living Rev. Sol., 3, 5–72, lrsp-2006-2, 2006. [Google Scholar]
  • Scopke, N., A General Relation between the Energy of Trapped Particles and the Disturbance Field near the Earth, J. Geophys. Res., 71, 3125–3130, 1966. [CrossRef] [Google Scholar]
  • Søraas, F., K. Aarsnes, K. Oksavik, M.I. Sandanger, D.S. Evans, and M.S. Greer, Evidence for particle injection as the cause of Dst reduction during HILDCAA events, J. Atmos. Solar-Terr. Phys., 66 (2), 177–186, DOI: 10.1016/j.jastp.2003.05, 2004. [CrossRef] [Google Scholar]
  • Stamper, R., M. Lockwood, M.N. Wild, and T.D.G. Clark, Solar causes of the long-term increase in geomagnetic activity, J. Geophys. Res., 104 (A12), 28325–28342, DOI: 10.1029/1999JA900311, 1999. [CrossRef] [Google Scholar]
  • Stauning, P., A new index for the interplanetary merging electric field and geomagnetic activity: application of the unified polar cap indices, Space Weather, 5, S09001, DOI: 10.1029/2007SW000311, 2007. [CrossRef] [Google Scholar]
  • Stauning, P., The Polar Cap PC indices: relations to solar wind and global disturbances. Edited by M. Lazar, Exploring the Solar Wind, InTech, Chap. 16, 357–398, DOI: 10.5772/37359, 2012. [Google Scholar]
  • Stauning, P., O.A. Troshichev, and A. Janzhura, The Polar Cap (PC) index: relations to solar wind parameters and global activity level, J. Atmos. Solar-Terr. Phys., DOI: 10.1016/j.jastp.2008.09.028, 2008. [Google Scholar]
  • Steinhilber, F., J.A. Abreu, J. Beer, and K.G. McCracken, Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides, J. Geophys. Res., 115, A01104, DOI: 10.1029/2009JA014193, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Svalgaard, L., Geomagnetic activity: dependence on solar wind parameters. Edited by A. Zirker, Coronal Holes and High Speed Wind Streams, Colorado Assoc. Univ. Press, 371–441, 1978. [Google Scholar]
  • Svalgaard, L., and E.W. Cliver, The IDV index: its derivation and use in inferring long-term variations of the interplanetary magnetic field strength, J. Geophys. Res., 110, A12103, DOI: 10.1029/2005JA011203, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Svalgaard, L., and E.W. Cliver, Interhourly variability index of geomagnetic activity and its use in deriving the long-term variation of solar wind speed, J. Geophys. Res., 112, A10111, DOI: 10.1029/2007JA012437, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Svalgaard, L., E.W. Cliver, and P. Le Sager, Determination of interplanetary magnetic field strength, solar wind speed, and EUV irradiance. Edited by A. Wilson, International Solar Cycle Studies Symposium, Tatranska Lomnica, Slovak Republic, Proceedings (ESA SP-535), 15–24, 2003. [Google Scholar]
  • Svalgaard, L., E.W. Cliver, and P. Sager, IHV: a new long-term geomagnetic index, Adv. Space Res., 34, 1–2, DOI: 10.1016/j.asr.2003.01.029, 2004. [CrossRef] [Google Scholar]
  • Takahashi, S., T. Iyemori, and M. Takeda, A simulation of the storm time ring current, Planet. Space Sci., 38 (9), 1133–1141, DOI: 10.1016/0032-0633(90)90021-H, 1990. [CrossRef] [Google Scholar]
  • Teodosiev, D., E. Yordanova, P. Nenovski, T. Nikolova, D. Danov, G. Crowley, L. Baddeley, and S. Buchert, Ion Temperature Distribution in the High-Latitude Region, Comptes Rendus (EISCAT UHF Radar Observations). What is the Field-aligned Currents Influence?, Acad. Bul. Sci., 64 (5), 729–736, 2011. [Google Scholar]
  • Thomson, A.W.P., C.T. Gaunt, P. Cilliers, J.A. Wild, B. Opperman, L.A. McKinnell, P. Kotze, C.M. Ngwira, and S.I. Lotz, Present dat challenges in understanding the geomagnetic hazard to national power grids, Adv. Space Res., 45, 1182–1190, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Tóth, G., I.V. Sokolov, T.I. Gombosi, D.R. Chesney, C.R. Clauer, D.L. DeZeeuw, K.C. Hansen, K.J. Kane, W.B. Manchester, R.C. Oehmke, et al., Space Weather Modeling Framework: a new tool for the space community, J. Geophys. Res., 110, A12226, DOI: 10.1029/2005JA011126, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Troshichev, O.A., Ground-based Monitoring of the Solar Wind Geoefficiency. Edited by M. Lazar, Exploring the Solar Wind, InTech, Chap. 15, 337–356, DOI: 10.5772/38227, ISBN 978-953-51-0339-4, http://www.intechopen.com/books/exploring-the-solar-wind/ground-based-monitoring-of-the-solar-wind-geoefficiency, 2012. [Google Scholar]
  • Troshichev, O.A., V.G. Andrezen, S. Vennerstrøm, and E. Friis-Christensen, Magnetic activity in the polar cap – a new index, Planet. Space Sci., 36, 1095–1102, 1988. [CrossRef] [Google Scholar]
  • Troshichev, O.A., A. Janzhura, and P. Stauning, Unified PCN and PCS indices: method of calculation, physical sense and dependence on the IMF azimuthal and northward components, J. Geophys. Res., 111, A05208, DOI: 10.1029/2005JA011402, 2006. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., and W.D. Gonzalez, The cause of high-intensity long-duration continuous AE activity (HILDCAAs): interplanetary Alfvén wave trains, Planet. Space Sci., 35, 405–412, 1987. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani, B., A. Mannucci, B. Iijima, M.A. Abdu, J.H.A. Sobral, W. Gonzalez, F. Guarnieri,, T. Tsuda, A. Saito, and K. Yumoto, et al., Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 109, A08302, DOI: 10.1029/2003JA010342, 2004. [CrossRef] [Google Scholar]
  • Turner, N.E., W. Douglas Cramer, S.K. Earles, and B.A. Emery, Geoefficiency and energy partitioning in CIR-driven and CME-driven storms, J. Atmos. Solar Terr. Phys., 71 (10–11), 1023–1031, 2009. [CrossRef] [Google Scholar]
  • Twitty, C., T.D. Phan, G. Paschmann, B. Lavraud, H. Rème, and M. Dunlop, Cluster survey of cusp reconnection and its IMF dependence, Geophys. Res. Lett., 31, L19808, DOI: 10.1029/2004GL020646, 2004. [CrossRef] [Google Scholar]
  • Usoskin, I.G., K. Mursula, S.K. Solanki, M. Schüssler, and G. Kovaltsov, A physical reconstruction of cosmic ray intensity since 1610, J. Geophys. Res., 107 (11), 1374, DOI: 10.1029/2002JA009343, 2002. [NASA ADS] [CrossRef] [Google Scholar]
  • Usoskin, I.G., S.K. Solanki, and G.A. Kovaltsov, Grand minima and maxima of solar activity: new observational constraints, A&A, 471, 301–309, DOI: 10.1051/0004-6361:20077704, 2007. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Valach, F., P. Hejda, and J. Bochníček, Geoeffectiveness of XRA events associated with RSP II and/or RSP IV estimated using the artificial neural network, Stud. Geophys. Geod., 51 (4), 551–562, DOI: 10.1007/s11200-007-0032-5, 2007. [CrossRef] [Google Scholar]
  • Valach, F., M. Revallo, J. Bochníček, and P. Hejda, Solar energetic particle flux enhancement as a predictor of geomagnetic activity in a neural network-based model, Space Weather, 7, S04004, DOI: 10.1029/2008SW000421, 2009. [CrossRef] [Google Scholar]
  • Vasyliunas, V.M., The interrelationship of magnetospheric processes. Edited by B.M. McCormac, Earth’s Magnetospheric Processes, Dordrecht, Holland: D. Reidel Pub, 29–38, 1972. [CrossRef] [Google Scholar]
  • Vasyliunas, V.M., Reinterpreting the Burton-McPherron-Russell equation for predicting Dst, J. Geophys. Res., 111, A07S04, DOI: 10.1029/2005JA011440, 2006. [CrossRef] [Google Scholar]
  • Wang, C.B., J.K. Chao, and C.H. Lin, Influence of the solar wind dynamic pressure on the decay and injection of the ring current, J. Geophys. Res., 108 (9), 1341, DOI: 10.1029/2003JA009851, 2003. [CrossRef] [Google Scholar]
  • Wang, R., and J. Wang, Investigation of the cosmic ray ground level enhancements during solar cycle 23, Adv. Space Res., 38, 489–492, 2006. [CrossRef] [Google Scholar]
  • Wanliss, J.A., and K.M. Showalter, High-resolution global storm index: Dst versus SYM-H, J. Geophys. Res., 111, A02202, DOI: 10.1029/2005JA011034, 2006. [CrossRef] [Google Scholar]
  • Weigel, R.S., Solar wind density influence on geomagnetic storm intensity, J. Geophys. Res., 115, A09201, DOI: 10.1029/2009JA015062, 2010. [CrossRef] [Google Scholar]
  • Weimer, D.R., Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., 110, A05306, DOI: 10.1029/2004JA010884, 2005. [CrossRef] [Google Scholar]
  • Weygand, J.M., and R.L. McPherron, Dependence of ring current asymmetry on storm phase, J. Geophys. Res., 111, A11221, DOI: 10.1029/2006JA011808, 2006. [CrossRef] [Google Scholar]
  • Wild, J.A., S.E. Milan, C.J. Owen, J.M. Bosqued, M. Lester, D.M. Wright, H. Frey, C.W. Carlson, A.N. Fazakerley, and H. Remè, The location of the open-closed magnetic field line boundary in the dawn sector auroral ionosphere, Ann. Geophys., 22, 3625–3639, SRef-ID: 1432-0576/ag/2004-22-3625, 2004. [CrossRef] [Google Scholar]
  • Zhang, X.X., C. Wang, T. Chen, Y.L. Wang, A. Tan, T.S. Wu, G.A. Germany, and W. Wang, Global patterns of Joule heating in the high-latitude ionosphere, J. Geophys. Res., 110, A12208, DOI: 10.1029/2005JA011222, 2005. [CrossRef] [Google Scholar]
  • Zurbuchen, T.H., and I.G. Richardson, In-Situ Solar Wind and Magnetic Field Signatures of Interplanetary Coronal Mass Ejections, Space Sci. Rev., 123, 31–43, DOI: 10.1007/s11214-006-9010-4, 2006. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.