Open Access
J. Space Weather Space Clim.
Volume 3, 2013
Article Number A08
Number of page(s) 11
Published online 01 March 2013
  • Arnoldy, R.L., Signature in the interplanetary medium for substorms, J. Geophys. Res., 76, 5189, DOI: 10.1029/JA076i022p05189, 1971. [CrossRef] [Google Scholar]
  • Bartels, J., Terrestrial magnetic activity and its relation to solar phenomena, Terr. Magn. Atmos. Elect., 37, 1, 1932. [CrossRef] [Google Scholar]
  • Bartels, J., Solar activity and geomagnetism, Terr. Magn. Atmos. Elect., 45, 339, 1940. [CrossRef] [Google Scholar]
  • Bothmer, V., and R. Schwenn, The structure and origin of magnetic clouds in the solar wind, Ann. Geophys., 16, 1, 1998. [Google Scholar]
  • Burlaga, L.F., and R.P. Lepping, The causes of recurrent geomagnetic storms, Planet. Space Sci., 25, 1151, 1977. [NASA ADS] [CrossRef] [Google Scholar]
  • Cliver, E.W., and L. Svalgaard, The 1859 solar-terrestrial disturbance and the current limits of extreme space weather activity, Sol. Phys., 224, 407, 10.1007/s11207-005-4980-z, 2004. [Google Scholar]
  • Connick, D.E., C.W. Smith, and N.A. Schwadron, Interplanetary magnetic flux depletion during protracted solar minima, Astrophys. J., 727, 8, DOI: 10.1088/0004-637X/727/1/8, 2011. [Google Scholar]
  • Dungey, J.W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47, 1961. [NASA ADS] [CrossRef] [Google Scholar]
  • Echer, E., W.D. Gonzalez, B.T. Tsurutani, and A.L.C. Gonzalez, Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006), J. Geophys. Res., 113, A05221, DOI: 10.1029/2007JA012744, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Feminella, F., and M. Storini, Large scale dynamical phenomena during solar activity cycles, A&A, 322, 311, 1997. [Google Scholar]
  • Feynman, J., and N.U. Crooker, The solar wind at the turn of the century, Nature, 275, 626, 1978. [CrossRef] [Google Scholar]
  • Feynman, J., Geomagnetic and solar wind cycles, 1900–1975, J. Geophys. Res., 87, 6153, 1982. [NASA ADS] [CrossRef] [Google Scholar]
  • Gnevyshev, M.N., On the 11-years cycle of solar activity, Sol. Phys., 1, 107, 1967. [NASA ADS] [CrossRef] [Google Scholar]
  • Gnevyshev, M.N., Essential features of the 11 year solar cycle, Sol. Phys., 51, 175, 1977. [NASA ADS] [CrossRef] [Google Scholar]
  • Gosling, J.T., D.J. McComas, J.L. Phillips, and S.J. Bame, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections, J. Geophys. Res., 96, 7831, 1991. [NASA ADS] [CrossRef] [Google Scholar]
  • Hirshberg, J., and D.S. Colburn, Interplanetary field and geomagnetic variations: A unified view, Planet. Space Sci., 17, 1183, DOI: 10.1016/0032-0633(69)90010-5, 1969. [CrossRef] [Google Scholar]
  • Ji, E.-Y., Y.-J. Moon, and K.-H. Kim, Statistical comparison of interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT), J. Geophys. Res., 115, A10232, DOI: 10.1029/2009JA015112, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Kilpua, E.K.J., Y. Li, J.G. Luhmann, L.K. Jian, and C.T. Russell, On the relationship between magnetic cloud field polarity and geoeffectiveness, Ann. Geophys., 30, 1037, 2012. [CrossRef] [Google Scholar]
  • Klein, L.W., and L.F. Burlaga, Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 87, 613, 1982. [Google Scholar]
  • Li, Y., and J.G. Luhmann, Solar cycle control of the magnetic cloud polarity and the geoeffectiveness, J. Atmos. Solar-Terr. Phys., 66, 323, 2004. [CrossRef] [Google Scholar]
  • Li, Y., J.G. Luhmann, B.J. Lynch, and E.K.J. Kilpua, Cyclic reversal of magnetic cloud poloidal field, Sol. Phys., 270, 331, 2011. [CrossRef] [Google Scholar]
  • Menvielle, M., and A. Berthelier, The K-derived planetary indices: Description and availability, Rev. Geophys., 29, 415, DOI: 10.1029/91RG00994, 1991. [Google Scholar]
  • Mulligan, T., C.T. Russell, and J.G. Luhmann, Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere, Geophys. Res. Lett., 25, 2959, 1998. [CrossRef] [Google Scholar]
  • O’Brien, T.P., and R.L. McPherron, An empirical phase space analysis of ring current dynamics: solar wind control of injection and decay, J. Geophys. Res., 105, 7707, 2000. [CrossRef] [Google Scholar]
  • Ohl, A.I., Forecast of sunspot maximum of cycle 20, Solice Danie, 9, 84, 1966. [Google Scholar]
  • Perrealt, P., and S.-I. Akasofu, A study of geomagnetic storms, Geophys. J. R. Astron. Soc., 54, 547, 1978. [Google Scholar]
  • Richardson, I.G., and H.V. Cane, Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta, J. Geophys. Res., 100, 23397, 1995. [NASA ADS] [CrossRef] [Google Scholar]
  • Richardson, I.G., and H.V. Cane, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties, Sol. Phys., 264, 189, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Richardson, I.G., and H.V. Cane, Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011), J. Space Weather Space Clim., 2, A02, DOI: 10.1051/swsc/2012003, 2012a. [Google Scholar]
  • Richardson, I.G., and H.V. Cane, Solar wind drivers of geomagnetic storms during more than four solar cycles, J. Space Weather Space Clim., 2, A01, DOI: 10.1051/swsc/2012001, 2012b. [Google Scholar]
  • Richardson, I.G., E.W. Cliver, and H.V. Cane, Sources of geomagnetic activity over the solar cycle: Relative importance of CMEs, high-speed streams, and slow solar wind, J. Geophys. Res., 105 (18), 203, 2000. [Google Scholar]
  • Richardson, I.G., H.V. Cane, and E.W. Cliver, Sources of geomagnetic activity during nearly three solar cycles (1972–2000), J. Geophys. Res., 107, DOI: 10.1029/2001JA000504, 2002a. [Google Scholar]
  • Richardson, I.G., E.W. Cliver, and H.V. Cane, Long-term trends in interplanetary magnetic field strength and solar wind structure during the twentieth century, J. Geophys. Res., 107, DOI: 10.1029/2001JA000507, 2002b. [Google Scholar]
  • Russell, C.T., On the possibility of deducing interplanetary and solar parameters from geomagnetic records, Sol. Phys., 42, 259, 1975. [NASA ADS] [CrossRef] [Google Scholar]
  • Russell, C.T., J.G. Luhmann, and L.K. Jian, How unprecedented a solar minimum?, Rev. Geophys., 48, RG2004, DOI: 10.1029/2009RG000316, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Sheeley, Jr., N.R., J.W. Harvey, and W.C. Feldman, Coronal holes, solar wind streams, and recurrent geomagnetic disturbances, 1973–1976, Sol. Phys., 49, 271, 1976. [NASA ADS] [CrossRef] [Google Scholar]
  • Sheeley, Jr., N.R., J.S. Asbridge, S.J. Bame, and J.W. Harvey, A pictorial comparison of interplanetary magnetic field polarity, solar wind speed, and geomagnetic disturbance index during the sunspot cycle, Sol. Phys., 52, 485, 1977. [Google Scholar]
  • Smith, E.J., and A. Balogh, Decrease in heliospheric magnetic flux in this solar minimum: recent Ulysses magnetic field observations, Geophys. Res. Lett., 35, L22103, DOI: 10.1029/2008GL035345, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Stamper, R., M. Lockwood, M.N. Wild, and T.D.G. Clark, Solar causes of the long-term increase in geomagnetic activity, J. Geophys. Res., 104, 28–325, 1999. [Google Scholar]
  • Sugiura, M., Hourly values of equatorial Dst for the IGY, Ann. Int. Geophys. Year, 35, 9, 1964. [Google Scholar]
  • Svalgaard, L., and E.W. Cliver, Heliospheric magnetic field 1835–2009, J. Geophys. Res., 115, A09111, DOI: 10.1029/2009JA015069, 2010. [Google Scholar]
  • Thompson, R.J., A technique for predicting the amplitude of the solar cycle, Sol. Phys., 148, 383, 1993. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani, B.T., and W.D. Gonzalez, The interplanetary causes of magnetic storms: a review. in : A.G.U. Geophys. Monogr. Ser., edited by B.T., Tsurutani, W.D. Gonzalez, Y. Kamide, and J.K. Arballo, Vol. 98, AGU, Washington, DC, 77, 1997. [Google Scholar]
  • Tsurutani, B.T., W.D. Gonzalez, A.L.C. Gonzalez, F. Tang, J.K. Araballo, and M. Okada, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle, J. Geophys. Res., 100 (21), 717, 1995. [Google Scholar]
  • Tsurutani, B.T., N. Gopalswamy, R.L. McPherron, W.D. Gonzalez, G. Lu, and F.L. Guarnieri, Magnetic storms caused by corotating solar wind steams. in Recurrent Magnetic Storms: Corotating Solar Wind Streams, edited by B.T., Tsurutani, et al., A.G.U. Geophysical Monograph, 167, 45, 2006. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., E. Echer, and W.D. Gonzalez, The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields, Ann. Geophys., 29, 839, DOI: 10.5194/angeo-29-839-2011, 2011. [Google Scholar]
  • Waldmeier, M., Neue Eigenschaften der Sonnenfleckenkurve, Astron. Mitt. Zurich, 14 (133), 105, 1935. [Google Scholar]
  • Waldmeier, M., Die Zonenwanderung der Sonnenflecken, Astron. Mitt. Zurich, 14 (138), 470, 1939. [Google Scholar]
  • Zhang, G., and L.F. Burlaga, Magnetic clouds, geomagnetic disturbances and cosmic ray decreases, J. Geophys. Res., 93, 2511, 1988. [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang, J., I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, et al., Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005, J. Geophys. Res., 112, A12105, DOI: 10.1029/2007JA012332, 2007. [CrossRef] [Google Scholar]
  • Zurbuchen, T.H., and I.G. Richardson, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections, Space Sci. Rev., 123, 31–34, 2006. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.