Open Access
Issue
J. Space Weather Space Clim.
Volume 3, 2013
Article Number A08
Number of page(s) 11
DOI https://doi.org/10.1051/swsc/2013031
Published online 01 March 2013
  • Arnoldy, R.L., Signature in the interplanetary medium for substorms, J. Geophys. Res., 76, 5189, DOI: 10.1029/JA076i022p05189, 1971. [CrossRef]
  • Bartels, J., Terrestrial magnetic activity and its relation to solar phenomena, Terr. Magn. Atmos. Elect., 37, 1, 1932. [CrossRef]
  • Bartels, J., Solar activity and geomagnetism, Terr. Magn. Atmos. Elect., 45, 339, 1940. [CrossRef]
  • Bothmer, V., and R. Schwenn, The structure and origin of magnetic clouds in the solar wind, Ann. Geophys., 16, 1, 1998. [NASA ADS] [CrossRef]
  • Burlaga, L.F., and R.P. Lepping, The causes of recurrent geomagnetic storms, Planet. Space Sci., 25, 1151, 1977. [NASA ADS] [CrossRef]
  • Cliver, E.W., and L. Svalgaard, The 1859 solar-terrestrial disturbance and the current limits of extreme space weather activity, Sol. Phys., 224, 407, 10.1007/s11207-005-4980-z, 2004. [NASA ADS] [CrossRef]
  • Connick, D.E., C.W. Smith, and N.A. Schwadron, Interplanetary magnetic flux depletion during protracted solar minima, Astrophys. J., 727, 8, DOI: 10.1088/0004-637X/727/1/8, 2011. [CrossRef]
  • Dungey, J.W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47, 1961. [NASA ADS] [CrossRef]
  • Echer, E., W.D. Gonzalez, B.T. Tsurutani, and A.L.C. Gonzalez, Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006), J. Geophys. Res., 113, A05221, DOI: 10.1029/2007JA012744, 2008. [NASA ADS] [CrossRef]
  • Feminella, F., and M. Storini, Large scale dynamical phenomena during solar activity cycles, A&A, 322, 311, 1997.
  • Feynman, J., and N.U. Crooker, The solar wind at the turn of the century, Nature, 275, 626, 1978. [CrossRef]
  • Feynman, J., Geomagnetic and solar wind cycles, 1900–1975, J. Geophys. Res., 87, 6153, 1982. [NASA ADS] [CrossRef]
  • Gnevyshev, M.N., On the 11-years cycle of solar activity, Sol. Phys., 1, 107, 1967. [NASA ADS] [CrossRef]
  • Gnevyshev, M.N., Essential features of the 11 year solar cycle, Sol. Phys., 51, 175, 1977. [NASA ADS] [CrossRef]
  • Gosling, J.T., D.J. McComas, J.L. Phillips, and S.J. Bame, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections, J. Geophys. Res., 96, 7831, 1991. [NASA ADS] [CrossRef]
  • Hirshberg, J., and D.S. Colburn, Interplanetary field and geomagnetic variations: A unified view, Planet. Space Sci., 17, 1183, DOI: 10.1016/0032-0633(69)90010-5, 1969. [CrossRef]
  • Ji, E.-Y., Y.-J. Moon, and K.-H. Kim, Statistical comparison of interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT), J. Geophys. Res., 115, A10232, DOI: 10.1029/2009JA015112, 2010. [NASA ADS] [CrossRef]
  • Kilpua, E.K.J., Y. Li, J.G. Luhmann, L.K. Jian, and C.T. Russell, On the relationship between magnetic cloud field polarity and geoeffectiveness, Ann. Geophys., 30, 1037, 2012. [CrossRef]
  • Klein, L.W., and L.F. Burlaga, Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 87, 613, 1982. [NASA ADS] [CrossRef]
  • Li, Y., and J.G. Luhmann, Solar cycle control of the magnetic cloud polarity and the geoeffectiveness, J. Atmos. Solar-Terr. Phys., 66, 323, 2004. [CrossRef]
  • Li, Y., J.G. Luhmann, B.J. Lynch, and E.K.J. Kilpua, Cyclic reversal of magnetic cloud poloidal field, Sol. Phys., 270, 331, 2011. [CrossRef]
  • Menvielle, M., and A. Berthelier, The K-derived planetary indices: Description and availability, Rev. Geophys., 29, 415, DOI: 10.1029/91RG00994, 1991. [CrossRef]
  • Mulligan, T., C.T. Russell, and J.G. Luhmann, Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere, Geophys. Res. Lett., 25, 2959, 1998. [CrossRef]
  • O’Brien, T.P., and R.L. McPherron, An empirical phase space analysis of ring current dynamics: solar wind control of injection and decay, J. Geophys. Res., 105, 7707, 2000. [CrossRef]
  • Ohl, A.I., Forecast of sunspot maximum of cycle 20, Solice Danie, 9, 84, 1966.
  • Perrealt, P., and S.-I. Akasofu, A study of geomagnetic storms, Geophys. J. R. Astron. Soc., 54, 547, 1978. [NASA ADS] [CrossRef]
  • Richardson, I.G., and H.V. Cane, Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta, J. Geophys. Res., 100, 23397, 1995. [NASA ADS] [CrossRef]
  • Richardson, I.G., and H.V. Cane, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties, Sol. Phys., 264, 189, 2010. [NASA ADS] [CrossRef]
  • Richardson, I.G., and H.V. Cane, Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011), J. Space Weather Space Clim., 2, A02, DOI: 10.1051/swsc/2012003, 2012a. [CrossRef] [EDP Sciences]
  • Richardson, I.G., and H.V. Cane, Solar wind drivers of geomagnetic storms during more than four solar cycles, J. Space Weather Space Clim., 2, A01, DOI: 10.1051/swsc/2012001, 2012b. [CrossRef] [EDP Sciences]
  • Richardson, I.G., E.W. Cliver, and H.V. Cane, Sources of geomagnetic activity over the solar cycle: Relative importance of CMEs, high-speed streams, and slow solar wind, J. Geophys. Res., 105 (18), 203, 2000.
  • Richardson, I.G., H.V. Cane, and E.W. Cliver, Sources of geomagnetic activity during nearly three solar cycles (1972–2000), J. Geophys. Res., 107, DOI: 10.1029/2001JA000504, 2002a.
  • Richardson, I.G., E.W. Cliver, and H.V. Cane, Long-term trends in interplanetary magnetic field strength and solar wind structure during the twentieth century, J. Geophys. Res., 107, DOI: 10.1029/2001JA000507, 2002b.
  • Russell, C.T., On the possibility of deducing interplanetary and solar parameters from geomagnetic records, Sol. Phys., 42, 259, 1975. [NASA ADS] [CrossRef]
  • Russell, C.T., J.G. Luhmann, and L.K. Jian, How unprecedented a solar minimum?, Rev. Geophys., 48, RG2004, DOI: 10.1029/2009RG000316, 2010. [NASA ADS] [CrossRef]
  • Sheeley, Jr., N.R., J.W. Harvey, and W.C. Feldman, Coronal holes, solar wind streams, and recurrent geomagnetic disturbances, 1973–1976, Sol. Phys., 49, 271, 1976. [CrossRef]
  • Sheeley, Jr., N.R., J.S. Asbridge, S.J. Bame, and J.W. Harvey, A pictorial comparison of interplanetary magnetic field polarity, solar wind speed, and geomagnetic disturbance index during the sunspot cycle, Sol. Phys., 52, 485, 1977. [CrossRef]
  • Smith, E.J., and A. Balogh, Decrease in heliospheric magnetic flux in this solar minimum: recent Ulysses magnetic field observations, Geophys. Res. Lett., 35, L22103, DOI: 10.1029/2008GL035345, 2008. [NASA ADS] [CrossRef]
  • Stamper, R., M. Lockwood, M.N. Wild, and T.D.G. Clark, Solar causes of the long-term increase in geomagnetic activity, J. Geophys. Res., 104, 28–325, 1999. [CrossRef]
  • Sugiura, M., Hourly values of equatorial Dst for the IGY, Ann. Int. Geophys. Year, 35, 9, 1964.
  • Svalgaard, L., and E.W. Cliver, Heliospheric magnetic field 1835–2009, J. Geophys. Res., 115, A09111, DOI: 10.1029/2009JA015069, 2010. [NASA ADS] [CrossRef]
  • Thompson, R.J., A technique for predicting the amplitude of the solar cycle, Sol. Phys., 148, 383, 1993. [NASA ADS] [CrossRef]
  • Tsurutani, B.T., and W.D. Gonzalez, The interplanetary causes of magnetic storms: a review. in : A.G.U. Geophys. Monogr. Ser., edited by B.T., Tsurutani, W.D. Gonzalez, Y. Kamide, and J.K. Arballo, Vol. 98, AGU, Washington, DC, 77, 1997. [CrossRef]
  • Tsurutani, B.T., W.D. Gonzalez, A.L.C. Gonzalez, F. Tang, J.K. Araballo, and M. Okada, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle, J. Geophys. Res., 100 (21), 717, 1995. [NASA ADS] [CrossRef]
  • Tsurutani, B.T., N. Gopalswamy, R.L. McPherron, W.D. Gonzalez, G. Lu, and F.L. Guarnieri, Magnetic storms caused by corotating solar wind steams. in Recurrent Magnetic Storms: Corotating Solar Wind Streams, edited by B.T., Tsurutani, et al., A.G.U. Geophysical Monograph, 167, 45, 2006. [CrossRef]
  • Tsurutani, B.T., E. Echer, and W.D. Gonzalez, The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields, Ann. Geophys., 29, 839, DOI: 10.5194/angeo-29-839-2011, 2011. [CrossRef]
  • Waldmeier, M., Neue Eigenschaften der Sonnenfleckenkurve, Astron. Mitt. Zurich, 14 (133), 105, 1935.
  • Waldmeier, M., Die Zonenwanderung der Sonnenflecken, Astron. Mitt. Zurich, 14 (138), 470, 1939.
  • Zhang, G., and L.F. Burlaga, Magnetic clouds, geomagnetic disturbances and cosmic ray decreases, J. Geophys. Res., 93, 2511, 1988. [NASA ADS] [CrossRef]
  • Zhang, J., I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, et al., Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005, J. Geophys. Res., 112, A12105, DOI: 10.1029/2007JA012332, 2007. [CrossRef]
  • Zurbuchen, T.H., and I.G. Richardson, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections, Space Sci. Rev., 123, 31–34, 2006. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.