J. Space Weather Space Clim.
Volume 3, 2013
Space Weather and Challenges for Modern Society
Article Number A28
Number of page(s) 10
Published online 23 August 2013
  • Elphinstone, R.D., K. Jankowska, J.S. Murphree, and L.L. Cogger, The configuration of the auroral distribution for interplanetary magnetic field Bz northward. I – IMF Bx and By dependencies as observed by the Viking satellite, J. Geophys. Res., 95, 5791–5804, 1990. [CrossRef]
  • Harang, L., The mean field of the polar earth-magnetic storm, Geofysiske Publikasjoner (Geophysica Norwegica), 16, 1–44, 1946a.
  • Harang, L., The mean field of disturbance of polar geomagnetic storms, Terrestrial Magnetism and Atmospheric Electricity (J. Geophys. Res.), 51, 353, 1946b. [CrossRef]
  • Heppner, J.P., The Harang discontinuity in auroral belt ionospheric currents, Geofysiske Publikasjoner (Geophysica Norwegica), 29, 105–120, 1972.
  • Kabin, K., R. Rankin, G. Rostoker, R. Marchand, I.J. Rae, A.J. Ridley, T.I. Gombosi, C.R. Clauer, and D.L. DeZeeuw, Open-closed field line boundary position: a parametric study using an MHD model, J. Geophys. Res. (Space Phys.), 109, A05222, 2004. [CrossRef]
  • Kisabeth, J.L., and G. Rostoker, Development of the polar electrojet during polar magnetic substorms, J. Geophys. Res., 76, 6815, 1971. [CrossRef]
  • Machol, J.L., J.C. Green, R.J. Redmon, R.A. Viereck, and P.T. Newell, Evaluation of OVATION Prime as a forecast model for visible aurorae, Space Weather, 10, S03005, 2012. [CrossRef]
  • Milan, S.E., M. Lester, S.W.H. Cowley, K. Oksavik, M. Brittnacher, R.A. Greenwald, G. Sofko, and J.-P. Villain, Variations in the polar cap area during two substorm cycles, Ann. Geophys., 21, 1121–1140, 2003. [CrossRef]
  • Milan, S.E., G. Provan, and B. Hubert, Magnetic flux transport in the Dungey cycle: a survey of dayside and nightside reconnection rates, J. Geophys. Res., 112, A01209, 2007. [CrossRef]
  • Newell, P.T., T. Sotirelis, J.M. Ruohoniemi, J.F. Carbary, K. Liou, J.P. Skura, C.-I. Meng, C. Deehr, D. Wilkinson, and F.J. Rich, OVATION: oval variation, assessment, tracking, intensity, and online nowcasting, Ann. Geophys., 20, 1039–1047, 2002. [CrossRef]
  • Newell, P.T., T. Sotirelis, K. Liou, A.R. Lee, S. Wing, J. Green, and R. Redmon, Predictive ability of four auroral precipitation models as evaluated using Polar UVI global images, Space Weather, 8, S12004, 2010a. [CrossRef]
  • Newell, P.T., T. Sotirelis, and S. Wing, Seasonal variations in diffuse, monoenergetic, and broadband aurora, J. Geophys. Res. (Space Phys.), 115, A03216, 2010b. [CrossRef]
  • Rae, I.J., K. Kabin, J.Y. Lu, R. Rankin, S.E. Milan, F.R. Fenrich, C.E.J. Watt, J.-C. Zhang, A.J. Ridley, T.I. Gombosi, C.R. Clauer, G. Tóth, and D.L. DeZeeuw, Comparison of the open-closed separatrix in a global magnetospheric simulation with observations: the role of the ring current, J. Geophys. Res. (Space Phys.), 115, A08216, 2010. [CrossRef]
  • Rostoker, G., and J.L. Kisabeth, Response of the polar electrojets in the evening sector to polar magnetic substorms, J. Geophys. Res., 78, 5559, 1973. [CrossRef]
  • Rostoker, G., K. Kawasaki, T.J. Hughes, J.D. Winningham, and J.R. Burrows, Energetic particle precipitation into the high-latitude ionosphere and the auroral electrojets. II – Eastward electrojet and field-aligned current flow at the dusk meridian, J. Geophys. Res., 84, 2006–2018, 1979. [CrossRef]
  • Sigernes, F., M. Dyrland, P. Brekke, S. Chernouss, D.A. Lorentzen, K. Oksavik, and C. Sterling Deehr, Two methods to forecast auroral displays, J. Space Weather Space Clim., 1, A03, 2011. [CrossRef] [EDP Sciences]
  • Starkov, G., Mathematical model of the auroral boundaries, Geomag. Aeron., 34, 331–336, 1994.
  • Vennerstrom, S., E. Friis-Christensen, T.S. Jorgensen, O. Rasmussen, C.R. Clauer, and V.B. Wickwar, Ionospheric currents and F-region plasma boundaries near the dayside cusp, Geophys. Res. Lett., 11, 903906, 1984. [CrossRef]
  • Walker, J.K., Space-time associations of the aurora and magnetic disturbance, J. Atmos. Terr. Phys., 26, 951–954, 1964. [CrossRef]
  • Wallis, D.D., G. Rostoker, and C.D. Anger, The spatial relationship of auroral electrojets and visible aurora in the evening sector, J. Geophys. Res., 81, 2857–2869, 1976. [CrossRef]
  • Weimer, D.R., Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res. (Space Phys.), 110, A05306, 2005a. [CrossRef]
  • Weimer, D.R., Predicting surface geomagnetic variations using ionospheric electrodynamic models, J. Geophys. Res. (Space Phys.), 110, A12307, 2005b. [CrossRef]
  • Winningham, J.D., K. Kawasaki, and G. Rostoker, Energetic particle precipitation into the high-latitude ionosphere and the auroral electrojets. I – Definition of electrojet boundaries using energetic electron spectra and ground-based magnetometer data, J. Geophys. Res., 84, 1993–2005, 1979. [CrossRef]
  • Zhang, Y., and L.J. Paxton, An empirical Kp-dependent global auroral model based on TIMED/GUVIFUV data, J. Atmos. Sol. Terr. Phys., 70, 1231–1242, 2008. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.