Issue
J. Space Weather Space Clim.
Volume 4, 2014
Solar variability, solar forcing, and coupling mechanisms in the terrestrial atmosphere
Article Number A14
Number of page(s) 9
DOI https://doi.org/10.1051/swsc/2014012
Published online 24 April 2014
  • Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, and J.W. Harder, Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model, A&A, 530, A71, DOI: 10.1051/0004-6361/201016189, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al., Recent variability of the solar spectral irradiance and its impact on climate modelling, Atmos. Chem. Phys., 13, 3945–3977, DOI: 10.5194/acp-13-3945-2013, 2013. [Google Scholar]
  • Fehlmann, A., G. Kopp, W. Schmutz, R. Winkler, W. Finsterle, and N. Fox, Fourth world radiometric reference to SI radiometric scale comparison and implications to On-orbit measurements of the total solar irradiance, Metrologia, S34–S38, DOI: 10.1088/0026-1394/49/2/S34, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  • Feulner, G., Are the most recent estimates for Maunder Minimum solar irradiance in agreement with temperature reconstructions?, Geophys. Res. Lett., 38, L16706, DOI: 10.1029/2011GL048529, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Fligge, M., and S.K. Solanki, Properties of flux tubes and the relation with solar irradiance variability, J. Astrophys. Astron., 21, 275–282, DOI: 10.1007/BF02702409, 2000. [CrossRef] [Google Scholar]
  • Fontenla, J., and G. Harder, Physical modeling of spectral irradiance variations, Memorie della Societa Astronomica Italiana, 76, 826–833, 2005. [Google Scholar]
  • Fröhlich, C., Observations of irradiance variations, Space Sci. Rev., 94, 15–24, DOI: 10.1023/A:1026765712084, 2000. [NASA ADS] [CrossRef] [Google Scholar]
  • Fröhlich, C., and J. Lean, Solar radiative output and its variability: evidence and mechanisms, Astron. Astrophys. Rev., 12, 273–320, DOI: 10.1007/s00159-004-0024-1, 2004. [CrossRef] [Google Scholar]
  • Gray, L.J., J. Beer, M. Geller, J.D. Haigh, M. Lockwood, et al., Solar influences on climate, Rev. Geophys., 48, RG4001, DOI: 10.1029/2009RG000282, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Haigh, J.D., A.R. Winning, R. Toumi, and J.W. Harder, An influence of solar spectral variations on radiative forcing of climate, Nature, 467, 696–699, DOI: 10.1038/nature09426, Oct. 2012. [Google Scholar]
  • Haigh, J., Solar influences on climate, Grantham Institute for Climate Change, Briefing Paper No. 5, February 2011. [Google Scholar]
  • Harder, J.W., J.M. Fontenla, P. Pilewskie, E.C. Richard, and T.N. Woods, Trends in solar spectral irradiance variability in the visible and infrared, Geophys. Res. Lett., 36, L07801, 1–5, DOI: 10.1029/2008GL036797, 2009. [Google Scholar]
  • IPCC, Climate change 2013: the physical science basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2013. [Google Scholar]
  • Kopp, G., and G. Lawrence, The total irradiance monitor (TIM): instrument design, Sol. Phys., 230, DOI: 10.1007/s11207-005-7446-4, 2005. [Google Scholar]
  • Kopp, G., K. Heuerman, and G. Lawrence, The total irradiance monitor (TIM): instrument calibration, Sol. Phys., 230, 111–127, DOI: 10.1007/s11207-005-7447-3, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Kopp, G., K. Heuerman, D. Harber, and V. Drake, The TSI radiometer facility – absolute calibrations for total solar irradiance instruments, SPIE Proceedings, 6677-09, DOI: 10.1117/12.734553, 2007. [Google Scholar]
  • Kopp, G., and J.L. Lean, A new, lower value of total solar irradiance: evidence and climate significance, Geophys. Res. Lett., 38, L01706, DOI: 10.1029/2010GL045777, 2011. [Google Scholar]
  • Kopp, G., and J. Lean, The solar climate data record: scientific assessment of strategies to mitigate an impending gap in total solar irradiance observations between the NASA SORCE and NOAA TSIS missions (Study B), NRC Report solicited by NOAA NCDC, January 2013. [Google Scholar]
  • Kren, A.C., P. Pilewskie, and O. Coddington, An examination of energy sources for Earth’s Atmosphere, Rev. Geophys., 2014 (in preparation). [Google Scholar]
  • Krivova, N.A., S.K. Solanki, M. Fligge, and Y. C. Unruh, Reconstruction of solar irradiance variations in cycle 23: Is solar surface magnetism the cause?, A&A, 399, L1–L4, DOI: 10.1051/0004-6361:20030029, 2003. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Lean, J., Evolution of the sun’s spectral irradiance since the maunder minimum, Geophys. Res. Lett., 27 (16), 2425–2428, DOI: 10.1029/2000GL000043, 2000. [CrossRef] [Google Scholar]
  • Lean, J. L., and D. H. Rind, How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006, Geophys. Res. Lett., 35, L18701, DOI: 10.1029/2008GL034864, 2008. [Google Scholar]
  • Lean, J.L., and T.N. Woods, Solar total and spectral irradiance measurements and models: a users guide. in Evolving solar physics and the climates of earth and space, K., Schrijver, and G. Siscoe (Eds.) Cambridge Univ. Press, 2010. [Google Scholar]
  • Lean, J., Cycles and trends in solar irradiance and climate, WIRES Climate Change, 1, 111–122, DOI: 10.1002/wcc.018, 2010. [Google Scholar]
  • Lean, J.L., and M.T. DeLand, How does the sun’s spectrum vary?, Journal of Climate, 25, 2555–2560, DOI: 10.1175/JCLI-D-11-00571.1, 2012. [Google Scholar]
  • Loeb, N.G., J.M. Lyman, G.C. Johnson, R.P. Allan, D.R. Doelling, T. Wong, B.J. Soden, and G.L. Stephens, Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent with uncertainty, Nat. Geosci., 1, 110–113, DOI: 10. 1038/ngeo1375, 2012. [CrossRef] [Google Scholar]
  • Marsh, D.R., R.R. Garcia, D.E. Kinnison, B.A. Boville, F. Sassi, S.C. Solomon, and K. Matthes, Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing, J. Geophys. Res., 112, D23306, DOI: 10.1029/2006JD008306, 2007. [Google Scholar]
  • Matthes, K., Solar cycle and climate predictions, Nat. Geosci., 735–736, News and Views, DOI: 10.1038/ngeo1298, 2011. [CrossRef] [Google Scholar]
  • McClintock, W.E., M. Snow, and T.N. Woods, Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): instrument concept and design, Sol. Phys., 230, 225–258, DOI: 10.1007/s11207-005-7446-4, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • McClintock, W.E., M. Snow, and T.N. Woods, Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): pre-launch and on-orbit calibrations, Sol. Phys., 230, 259–294, DOI: 10.1007/s11207-005-7446-4, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Merkel, A.W., J.W. Harder, D.R. Marsh, A.K. Smith, J.M. Fontenla, and T.N. Woods, The impact of solar spectral irradiance variability on middle atmospheric ozone, Geophys. Res. Lett., 38, L13802, DOI: 10.1029/2011GL047561, 2011. [Google Scholar]
  • Privette, J., S. Walters, G. Kopp, J. Lean, and R. Cahalan, Mitigating a likely gap in total solar irradiance measurements between the SORCE and TSIS missions, in: AMS Meeting, Austin, TX, 6–10 January 2013. [Google Scholar]
  • Rottman, G.J., T.N. Woods, and T.P. Sparn, Solar Stellar Irradiance Comparison Experiment I: 1 instrument design and operation, J. Geophys. Res., 98, 10667–10677, DOI: 10.1029/93JD00462, 1993. [NASA ADS] [CrossRef] [Google Scholar]
  • Rottman, G., The SORCE Mission, Sol. Phys., 203 (1), 7–25, DOI: 10.1007/s11207-005-8112-6, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Sellers, W.D., Physical Climatology, Univ. of Chicago Press, p. 12, 1965. [Google Scholar]
  • Skupin, J., M. Weber, S. Noel, H. Bovensmann, and J. P. Burrows, GOME and SCIAMACHY solar measurements: solar spectral irradiance and Mg II solar activity proxy indicator, Memorie della Societa Astronomica Italiana, 76, 1038, 2005. [Google Scholar]
  • Solanki, S.K., N.A. Krivova, and J.D. Haigh, Solar irradiance variability and climate, Annual Review of Astronomy and Astrophysics, 51, 311–351, DOI: 10.1146/annurev-astro-082812-141007, 2013. [Google Scholar]
  • Steinhilber, F., J. Beer, and C. Fröhlich, Total solar irradiance during the Holocene, Geophys. Res. Lett., 36, L19704, DOI: 10.1029/2009GL040142, 2009. [Google Scholar]
  • Stevens, G., J.D. Haigh, J.W. Harvey, C. Ichoku, K.-N. Liou, J. Rice, W. Smith, and B. Wielicki, Review of NOAA Working Group Report on Maintaining the Continuation of Long-term Satellite Total Solar Irradiance Observation, National Academies Press, 978-0-309-28763-0, 2013. [Google Scholar]
  • Tapping, K.F., D. Boteler, P. Charbonneau, A. Crouch, A. Manson, and H. Paquette, Solar magnetic activity and total irradiance since the maunder minimum, Sol. Phys., 246, 309–326, DOI: 10.1007/s11207-007-9047, 2007. [Google Scholar]
  • Trenberth, K., J.T. Fasullo, and J. Kiehl, Earth’s global energy Budget, Bull. Am. Meteorol. Soc., 311–323, DOI: 10.1175/2008BAMS2634.1, 2009. [Google Scholar]
  • Unruh, Y.C., S.K. Solanki, and M. Fligge, The spectral dependence of facular contrast and solar irradiance variations, A&A, 345, 635–642, 1999. [Google Scholar]
  • Wang, Y.-M., J. L. Lean, and N. R. Sheeley Jr., Modeling the Sun’s Magnetic Field and Irradiance Since 1713, Astrophys. J., 625, 522–538, DOI: 10.1086/429689, 2005. [Google Scholar]
  • Wild, M., D. Folini, C. Schär, N. Loeb, E.G. Dutton, and G. König-Langlo, A new diagram of the global energy balance, American Institute of Physics Conference Proceedings, 1531, 628–631, DOI: 10.1063/1.4804848, 2013. [Google Scholar]
  • Willson, R.C., Active cavity radiometer type IV, Appl. Opt., 18 (2), 179–188, DOI: 10.1364/AO.18.000179, 1979. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.