Issue
J. Space Weather Space Clim.
Volume 4, 2014
Solar variability, solar forcing, and coupling mechanisms in the terrestrial atmosphere
Article Number A14
Number of page(s) 9
DOI https://doi.org/10.1051/swsc/2014012
Published online 24 April 2014
  • Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, and J.W. Harder, Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model, A&A, 530, A71, DOI: 10.1051/0004-6361/201016189, 2011. [NASA ADS] [CrossRef] [EDP Sciences]
  • Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al., Recent variability of the solar spectral irradiance and its impact on climate modelling, Atmos. Chem. Phys., 13, 3945–3977, DOI: 10.5194/acp-13-3945-2013, 2013. [NASA ADS] [CrossRef]
  • Fehlmann, A., G. Kopp, W. Schmutz, R. Winkler, W. Finsterle, and N. Fox, Fourth world radiometric reference to SI radiometric scale comparison and implications to On-orbit measurements of the total solar irradiance, Metrologia, S34–S38, DOI: 10.1088/0026-1394/49/2/S34, 2012. [NASA ADS] [CrossRef]
  • Feulner, G., Are the most recent estimates for Maunder Minimum solar irradiance in agreement with temperature reconstructions?, Geophys. Res. Lett., 38, L16706, DOI: 10.1029/2011GL048529, 2011. [NASA ADS] [CrossRef]
  • Fligge, M., and S.K. Solanki, Properties of flux tubes and the relation with solar irradiance variability, J. Astrophys. Astron., 21, 275–282, DOI: 10.1007/BF02702409, 2000. [CrossRef]
  • Fontenla, J., and G. Harder, Physical modeling of spectral irradiance variations, Memorie della Societa Astronomica Italiana, 76, 826–833, 2005.
  • Fröhlich, C., Observations of irradiance variations, Space Sci. Rev., 94, 15–24, DOI: 10.1023/A:1026765712084, 2000. [NASA ADS] [CrossRef]
  • Fröhlich, C., and J. Lean, Solar radiative output and its variability: evidence and mechanisms, Astron. Astrophys. Rev., 12, 273–320, DOI: 10.1007/s00159-004-0024-1, 2004. [NASA ADS] [CrossRef]
  • Gray, L.J., J. Beer, M. Geller, J.D. Haigh, M. Lockwood, et al., Solar influences on climate, Rev. Geophys., 48, RG4001, DOI: 10.1029/2009RG000282, 2010. [NASA ADS] [CrossRef]
  • Haigh, J.D., A.R. Winning, R. Toumi, and J.W. Harder, An influence of solar spectral variations on radiative forcing of climate, Nature, 467, 696–699, DOI: 10.1038/nature09426, Oct. 2012. [NASA ADS] [CrossRef] [PubMed]
  • Haigh, J., Solar influences on climate, Grantham Institute for Climate Change, Briefing Paper No. 5, February 2011.
  • Harder, J.W., J.M. Fontenla, P. Pilewskie, E.C. Richard, and T.N. Woods, Trends in solar spectral irradiance variability in the visible and infrared, Geophys. Res. Lett., 36, L07801, 1–5, DOI: 10.1029/2008GL036797, 2009. [NASA ADS] [CrossRef]
  • IPCC, Climate change 2013: the physical science basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2013.
  • Kopp, G., and G. Lawrence, The total irradiance monitor (TIM): instrument design, Sol. Phys., 230, DOI: 10.1007/s11207-005-7446-4, 2005.
  • Kopp, G., K. Heuerman, and G. Lawrence, The total irradiance monitor (TIM): instrument calibration, Sol. Phys., 230, 111–127, DOI: 10.1007/s11207-005-7447-3, 2005. [NASA ADS] [CrossRef]
  • Kopp, G., K. Heuerman, D. Harber, and V. Drake, The TSI radiometer facility – absolute calibrations for total solar irradiance instruments, SPIE Proceedings, 6677-09, DOI: 10.1117/12.734553, 2007. [CrossRef]
  • Kopp, G., and J.L. Lean, A new, lower value of total solar irradiance: evidence and climate significance, Geophys. Res. Lett., 38, L01706, DOI: 10.1029/2010GL045777, 2011. [NASA ADS] [CrossRef]
  • Kopp, G., and J. Lean, The solar climate data record: scientific assessment of strategies to mitigate an impending gap in total solar irradiance observations between the NASA SORCE and NOAA TSIS missions (Study B), NRC Report solicited by NOAA NCDC, January 2013.
  • Kren, A.C., P. Pilewskie, and O. Coddington, An examination of energy sources for Earth’s Atmosphere, Rev. Geophys., 2014 (in preparation).
  • Krivova, N.A., S.K. Solanki, M. Fligge, and Y. C. Unruh, Reconstruction of solar irradiance variations in cycle 23: Is solar surface magnetism the cause?, A&A, 399, L1–L4, DOI: 10.1051/0004-6361:20030029, 2003. [NASA ADS] [CrossRef] [EDP Sciences]
  • Lean, J., Evolution of the sun’s spectral irradiance since the maunder minimum, Geophys. Res. Lett., 27 (16), 2425–2428, DOI: 10.1029/2000GL000043, 2000. [NASA ADS] [CrossRef]
  • Lean, J. L., and D. H. Rind, How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006, Geophys. Res. Lett., 35, L18701, DOI: 10.1029/2008GL034864, 2008. [CrossRef]
  • Lean, J.L., and T.N. Woods, Solar total and spectral irradiance measurements and models: a users guide. in Evolving solar physics and the climates of earth and space, K., Schrijver, and G. Siscoe (Eds.) Cambridge Univ. Press, 2010.
  • Lean, J., Cycles and trends in solar irradiance and climate, WIRES Climate Change, 1, 111–122, DOI: 10.1002/wcc.018, 2010. [CrossRef]
  • Lean, J.L., and M.T. DeLand, How does the sun’s spectrum vary?, Journal of Climate, 25, 2555–2560, DOI: 10.1175/JCLI-D-11-00571.1, 2012. [NASA ADS] [CrossRef]
  • Loeb, N.G., J.M. Lyman, G.C. Johnson, R.P. Allan, D.R. Doelling, T. Wong, B.J. Soden, and G.L. Stephens, Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent with uncertainty, Nat. Geosci., 1, 110–113, DOI: 10. 1038/ngeo1375, 2012. [CrossRef]
  • Marsh, D.R., R.R. Garcia, D.E. Kinnison, B.A. Boville, F. Sassi, S.C. Solomon, and K. Matthes, Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing, J. Geophys. Res., 112, D23306, DOI: 10.1029/2006JD008306, 2007. [CrossRef]
  • Matthes, K., Solar cycle and climate predictions, Nat. Geosci., 735–736, News and Views, DOI: 10.1038/ngeo1298, 2011. [CrossRef]
  • McClintock, W.E., M. Snow, and T.N. Woods, Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): instrument concept and design, Sol. Phys., 230, 225–258, DOI: 10.1007/s11207-005-7446-4, 2005. [NASA ADS] [CrossRef]
  • McClintock, W.E., M. Snow, and T.N. Woods, Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): pre-launch and on-orbit calibrations, Sol. Phys., 230, 259–294, DOI: 10.1007/s11207-005-7446-4, 2005. [NASA ADS] [CrossRef]
  • Merkel, A.W., J.W. Harder, D.R. Marsh, A.K. Smith, J.M. Fontenla, and T.N. Woods, The impact of solar spectral irradiance variability on middle atmospheric ozone, Geophys. Res. Lett., 38, L13802, DOI: 10.1029/2011GL047561, 2011. [NASA ADS] [CrossRef]
  • Privette, J., S. Walters, G. Kopp, J. Lean, and R. Cahalan, Mitigating a likely gap in total solar irradiance measurements between the SORCE and TSIS missions, in: AMS Meeting, Austin, TX, 6–10 January 2013.
  • Rottman, G.J., T.N. Woods, and T.P. Sparn, Solar Stellar Irradiance Comparison Experiment I: 1 instrument design and operation, J. Geophys. Res., 98, 10667–10677, DOI: 10.1029/93JD00462, 1993. [NASA ADS] [CrossRef]
  • Rottman, G., The SORCE Mission, Sol. Phys., 203 (1), 7–25, DOI: 10.1007/s11207-005-8112-6, 2005. [NASA ADS] [CrossRef]
  • Sellers, W.D., Physical Climatology, Univ. of Chicago Press, p. 12, 1965.
  • Skupin, J., M. Weber, S. Noel, H. Bovensmann, and J. P. Burrows, GOME and SCIAMACHY solar measurements: solar spectral irradiance and Mg II solar activity proxy indicator, Memorie della Societa Astronomica Italiana, 76, 1038, 2005.
  • Solanki, S.K., N.A. Krivova, and J.D. Haigh, Solar irradiance variability and climate, Annual Review of Astronomy and Astrophysics, 51, 311–351, DOI: 10.1146/annurev-astro-082812-141007, 2013. [NASA ADS] [CrossRef]
  • Steinhilber, F., J. Beer, and C. Fröhlich, Total solar irradiance during the Holocene, Geophys. Res. Lett., 36, L19704, DOI: 10.1029/2009GL040142, 2009. [NASA ADS] [CrossRef]
  • Stevens, G., J.D. Haigh, J.W. Harvey, C. Ichoku, K.-N. Liou, J. Rice, W. Smith, and B. Wielicki, Review of NOAA Working Group Report on Maintaining the Continuation of Long-term Satellite Total Solar Irradiance Observation, National Academies Press, 978-0-309-28763-0, 2013.
  • Tapping, K.F., D. Boteler, P. Charbonneau, A. Crouch, A. Manson, and H. Paquette, Solar magnetic activity and total irradiance since the maunder minimum, Sol. Phys., 246, 309–326, DOI: 10.1007/s11207-007-9047, 2007. [NASA ADS] [CrossRef]
  • Trenberth, K., J.T. Fasullo, and J. Kiehl, Earth’s global energy Budget, Bull. Am. Meteorol. Soc., 311–323, DOI: 10.1175/2008BAMS2634.1, 2009. [NASA ADS] [CrossRef]
  • Unruh, Y.C., S.K. Solanki, and M. Fligge, The spectral dependence of facular contrast and solar irradiance variations, A&A, 345, 635–642, 1999.
  • Wang, Y.-M., J. L. Lean, and N. R. Sheeley Jr., Modeling the Sun’s Magnetic Field and Irradiance Since 1713, Astrophys. J., 625, 522–538, DOI: 10.1086/429689, 2005. [NASA ADS] [CrossRef]
  • Wild, M., D. Folini, C. Schär, N. Loeb, E.G. Dutton, and G. König-Langlo, A new diagram of the global energy balance, American Institute of Physics Conference Proceedings, 1531, 628–631, DOI: 10.1063/1.4804848, 2013.
  • Willson, R.C., Active cavity radiometer type IV, Appl. Opt., 18 (2), 179–188, DOI: 10.1364/AO.18.000179, 1979. [NASA ADS] [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.