Open Access
J. Space Weather Space Clim.
Volume 4, 2014
Article Number A18
Number of page(s) 8
Published online 22 May 2014
  • Akmaev, R.A., On estimation and attribution of long-term temperature trends in the thermosphere, J. Geophys. Res., 117, A09321, 2012. [Google Scholar]
  • Akmaev, R.A., V.I. Fomichev, and X. Zhu, Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere, J. Atmos. Sol. Terr. Phys., 68 (17), 1879–1889, 2006. [CrossRef] [Google Scholar]
  • Bremer, J., Ionospheric trends in mid-latitudes as a possible indicator of the atmospheric greenhouse effect, J. Atmos. Terr. Phys., 54 (11–12), 1505–1511, 1992. [CrossRef] [Google Scholar]
  • Bremer, J., Trends in the ionospheric E and F regions over Europe, Ann. Geophys., 16, 986–996, 1998. [CrossRef] [Google Scholar]
  • Bremer, J., Long-term trends in the ionospheric E and F1 regions, Ann. Geophys., 26, 1189–1197, 2008. [CrossRef] [Google Scholar]
  • Bremer, J., T. Damboldt, J. Mielich, and P. Suessmann, Comparing long-term trends in the ionospheric F2-region with two different methods, J. Atmos. Sol. Terr. Phys., 77, 174–185, 2012. [CrossRef] [Google Scholar]
  • Clilverd, M.A., T.D.G. Clark, E. Clarke, H. Rishbeth, and T. Ulich, The causes of long-term changes in the aa index, J. Geophys. Res., 107 (A12), 14–41, 2002. [Google Scholar]
  • Cnossen, I., Climate change in the upper atmosphere. In: G., Liu, Editor. Greenhouse gases-emission, measurement and management, InTech, pp. 315–336, 2012. [Google Scholar]
  • Cnossen, I., and A.D. Richmond, Modelling the effects of changes in the Earth’s magnetic field from 1957 to 1997 on the ionospheric hmF2 and foF2 parameters, J. Atmos. Sol. Terr. Phys., 70, 1512–1524, 2008. [CrossRef] [Google Scholar]
  • Cnossen, I., and A.D. Richmond, How changes in the tilt angle of the geomagnetic dipole affect the coupled magnetosphere-ionosphere-thermosphere system, J. Geophys. Res., 117, A10317, DOI: 10.1029/2012JA018056, 2012. [CrossRef] [Google Scholar]
  • Cnossen, I., and A.D. Richmond, Changes in the Earth’s magnetic field over the past century: Effects on the ionosphere-thermosphere system and solar quiet (Sq) magnetic variation, J. Geophys. Res., 118, 849–858, DOI: 10.1029/2012JA018447, 2013. [CrossRef] [Google Scholar]
  • Cnossen, I., A.D. Richmond, M. Wiltberger, W. Wang, and P. Schmitt, The response of the coupled magnetosphere-ionosphere-thermosphere system to a 25% reduction in the dipole moment of the Earth’s magnetic field, J. Geophys. Res., 116, A12304, DOI: 10.1029/2011JA017063, 2011. [CrossRef] [Google Scholar]
  • Cnossen, I., A.D. Richmond, and M. Wiltberger, The dependence of the coupled magnetosphere-ionosphere-thermosphere system on the Earth’s magnetic dipole moment, J. Geophys. Res., 117, A05302, DOI: 10.1029/2012JA017555, 2012. [Google Scholar]
  • De Haro Barbas, B.F., A.G. Elias, I. Cnossen, and M. Zossi de Artigas, Long-term changes in solar quiet (Sq) geomagnetic variations related to Earth’s magnetic field secular variation, J. Geophys. Res., 118, 3712–3718, DOI: 10.1002/jgra.50352, 2013. [CrossRef] [Google Scholar]
  • Donaldson, J.K., T.J. Wellman, and W.L. Oliver, Long-term change in thermospheric temperature above Saint Santin, J. Geophys. Res., 115, A11305, 2010. [CrossRef] [Google Scholar]
  • Doumbia, V., A. Maute, and A.D. Richmond, Simulation of equatorial electrojet magnetic effects with the thermosphere-ionosphere-electrodynamics general circulation model, J. Geophys. Res., 112, A09309, 2007. [Google Scholar]
  • Elias, A.G., and N. Ortiz de Adler, Earth magnetic field and geomagnetic activity effects on long-term trends in the F2 layer at mid-high latitudes, J. Atmos. Sol. Terr. Phys., 68, 1871–1878, 2006. [CrossRef] [Google Scholar]
  • Elias, A.G., M. Zossi de Artigas, and B.F. de Haro Barbas, Trends in the solar quiet geomagnetic field variation linked to the Earth’s magnetic field secular variation and increasing concentrations of greenhouse gases, J. Geophys. Res., 115, A08316, 2010. [Google Scholar]
  • Emmert, J.T., J.M. Picone, J.L. Lean, and S.H. Knowles, Global change in the thermosphere: Compelling evidence of a secular decrease in density, J. Geophys. Res., 109, A02301, 2004. [Google Scholar]
  • Emmert, J.T., and J.M. Picone, Statistical uncertainty of 1967–2005 thermospheric density trends derived from orbital drag, J. Geophys. Res., 116, A00H09, 2011. [Google Scholar]
  • Finlay, C.C., S. Maus, C.D. Beggan, et al., International Geomagnetic Reference Field: the eleventh generation, Geophys. J. Int., 183, 1216–1230, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Hagan, M.E., and J.M. Forbes, Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 107 (D24), 4754, DOI: 10.1029/2001JD001236, 2002. [CrossRef] [Google Scholar]
  • Hagan, M.E., and J.M. Forbes, Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 108, 1062, DOI: 10.1029/2002JA009466, 2003. [CrossRef] [Google Scholar]
  • Heelis, R.A., J.K. Lowell, and R.W. Spiro, A model of the high-latitude ionospheric convection pattern, J. Geophys. Res., 87, 6339–6345, 1982. [CrossRef] [Google Scholar]
  • Jarvis, M.J., B. Jenkins, and G.A. Rodgers, Southern hemisphere observations of a long-term decrease in F region altitude and thermospheric wind providing possible evidence for global thermospheric cooling, J. Geophys. Res., 103, 20774–20787, 1998. [Google Scholar]
  • Keating, G.M., R.H. Tolson, and M.S. Bradford, Evidence of long term global decline in the Earth’s thermospheric densities apparently related to anthropogenic effects, Geophys. Res. Lett., 27, 1523–1526, 2000. [CrossRef] [Google Scholar]
  • Laštovička, J., S.C. Solomon, and L. Qian, Trends in the neutral and ionized upper atmosphere, Space Sci. Rev., 168, 113–145, 2012. [CrossRef] [Google Scholar]
  • Maeda, S., T.J. Fuller-Rowell, and D.S. Evans, Heat budget of the thermosphere and temperature variations during the recovery phase of a geomagnetic storm, J. Geophys. Res., 97, 14947–14957, 1992. [CrossRef] [Google Scholar]
  • Oliver, W.L., S.-R. Zhang, and L.P. Goncharenko, Is thermospheric global cooling caused by gravity waves? J. Geophys. Res., 118, 3898–3908, 2013. [CrossRef] [Google Scholar]
  • Qian, L., A.G. Burns, S.C. Solomon, and R.G. Roble, The effect of carbon dioxide cooling on trends in the F2-layer ionosphere, J. Atmos. Sol. Terr. Phys., 71, 1592–1601, 2009. [CrossRef] [Google Scholar]
  • Qian, L., A.G. Burns, B.A. Emery, B. Foster, G. Lu, A. Maute, A.D. Richmond, R.G. Roble, S.C. Solomon, and W. Wang, The NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere system. In: J.D., Huba, R.W. Schunk, and G. Khazanov, Editors. Modeling the Ionosphere-Thermosphere System, vol. 201, p. 73–83, Am. Geophys. Union monograph, ISBN 978-0-87590-491-7, DOI: 10.1002/9781118704417.ch7, 2014. [CrossRef] [Google Scholar]
  • Richmond, A.D., E.C. Ridley, and R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 19 (6), 601–604, 1992. [CrossRef] [Google Scholar]
  • Richmond, A.D., and A. Maute, Ionospheric electrodynamics modeling. In: J.D., Huba, R.W. Schunk, and G. Khazanov, Editors. Modeling the Ionosphere-Thermosphere System, Am. Geophys. Union monograph, vol. 201, p. 57–71, ISBN 978-0-87590-491-7, DOI: 10.1002/9781118704417.ch6, 2014. [CrossRef] [Google Scholar]
  • Rishbeth, H., A greenhouse effect in the ionosphere, Planet. Space Sci., 38 (7), 945–948, 1990. [CrossRef] [Google Scholar]
  • Rishbeth, H., and R.G. Roble, Cooling of the upper atmosphere by enhanced greenhouse gases–modelling of thermospheric and ionospheric effects, Planet. Space Sci., 40 (7), 1011–1026, 1992. [CrossRef] [Google Scholar]
  • Roble, R.G., and R.E. Dickinson, How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere, Geophys. Res. Lett., 16 (12), 1441–1444, 1989. [CrossRef] [Google Scholar]
  • Roble, R.G., E.C. Ridley, A.D. Richmond, and R.E. Dickinson, A coupled thermosphere/ionosphere general circulation model, Geophys. Res. Lett., 15 (12), 1325–1328, 1988. [CrossRef] [Google Scholar]
  • Sharma, R.D., and R.G. Roble, Cooling mechanisms of the planetary thermospheres: they key role of O atom vibrational excitation of CO2 and NO, Chem. Phys. Chem., 3, 841–843, 2002. [CrossRef] [Google Scholar]
  • Stamper, R., M. Lockwood, M.N. Wild, and T.D.G. Clark, Solar causes of the long-term increase in geomagnetic activity, J. Geophys. Res., 104 (A12), 28325–28342, 1999. [CrossRef] [Google Scholar]
  • Torta, J.M., L.R. Gaya-Piqué, J.J. Curto, and D. Altadill, An inspection of the long-term behaviour of the range of the daily geomagnetic field variation from comprehensive modelling, J. Atmos. Sol. Terr. Phys., 71, 1497–1510, 2009. [CrossRef] [Google Scholar]
  • Ulich, T., and E. Turunen, Evidence for long-term cooling of the upper atmosphere in ionosonde data, Geophys. Res. Lett., 24, 1103–1106, 1997. [CrossRef] [Google Scholar]
  • Upadhyay, H.O., and K.K. Mahajan, Atmospheric greenhouse effect and ionospheric trends, Geophys. Res. Lett., 25, 3375–3378, 1998. [CrossRef] [Google Scholar]
  • Yue, X., L. Liu, W. Wan, Y. Wei, Z. Ren, Modeling the effects of secular variation of geomagnetic field orientation on the ionospheric long term trend over the past century, J. Geophys. Res., 113, A10301, 2008. [CrossRef] [Google Scholar]
  • Zhang, S.-R., J.M. Holt, Long-term ionospheric cooling: dependency on local time, season, solar activity and geomagnetic activity, J. Geophys. Res., 118, 3719–3730, DOI: 10.1002/jgra.50306, 2013. [CrossRef] [Google Scholar]
  • Zhang, S.-R., J.M. Holt, J. Kurdzo, Millstone Hill ISR observations of upper atmospheric long-term changes: Height dependency, J. Geophys. Res., 116, A00H05, 2011. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.