Open Access
Issue |
J. Space Weather Space Clim.
Volume 4, 2014
|
|
---|---|---|
Article Number | A25 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/swsc/2014023 | |
Published online | 15 September 2014 |
- Armitage-Caplan, C., J. Dunkley, H.K. Eriksen, and C. Dickinson, Large-scale polarized foreground component separation for Planck, Mon. Not. R. Astron. Soc., 418, 1498–1510, DOI: 10.1111/j.1365-2966.2011.19307.x, 2011. [CrossRef] [Google Scholar]
- Arnold, S.R., J. Methven, M.J. Evans, M.P. Chipperfield, A.C. Lewis, et al., Statistical inference of OH concentrations and air mass dilution rates from successive observations of nonmethane hydrocarbons in single air masses, J. Geophys. Res. [Atmos.], 112 (D11), D10S40, DOI: 10.1029/2006JD007594, 2007. [CrossRef] [Google Scholar]
- Austin, J., K. Tourpali, E. Rozanov, H. Akiyoshi, S. Bekki, et al., Coupled chemistry climate model simulations of the solar cycle in ozone and temperature, J. Geophys. Res. [Atmos.], 113 (D12), D11306, DOI: 10.1029/2007JD009391, 2008. [Google Scholar]
- Ball, W., Observations and modelling of total and spectral solar irradiance, PhD Thesis, Imperial College London, 2012. [Google Scholar]
- Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, and J.W. Harder, Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model, A&A, 530, A71, DOI: 10.1051/0004-6361/201016189, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, T. Wenzler, D.J. Mortlock, and A.H. Jaffe, Reconstruction of total solar irradiance 1974–2009, A&A, 541, A27, DOI: 10.1051/0004-6361/201118702, 2012. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Ball, W.T., N.A. Krivova, Y.C. Unruh, J.D. Haigh, and S.K. Solanki, A new SATIRE-S spectral solar irradiance reconstruction for solar cycles 21–23 and its implications for stratospheric ozone, Journal of Atmospheric Sciences, 2014. [Google Scholar]
- Bekki, S., J.A. Pyle, W. Zhong, R. Toumi, J.D. Haigh, and D.M. Pyle, The role of microphysical and chemical processes in prolonging the climate forcing of the Toba eruption, Geophys. Res. Lett., 23, 2669–2672, DOI: 10.1029/96GL02088, 1996. [CrossRef] [Google Scholar]
- Béland, S., J. Harder, and T. Woods, 10 years of degradation trends of the SORCE SIM instrument, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8862, DOI: 10.1117/12.2022867, 2013. [Google Scholar]
- Bergamaschi, P., R. Hein, M. Heimann, and P.J. Crutzen, Inverse modeling of the global CO cycle: 1. Inversion of CO mixing ratios, J. Geophys. Res., 105, 1909–1927, DOI: 10.1029/1999JD900818, 2000. [CrossRef] [Google Scholar]
- Bishop, L., and W.J. Hill, Bayesian probability calculations for stratospheric ozone modifications, J. Geophys. Res., 89, 2589–2594, DOI: 10.1029/JD089iD02p02589, 1984. [CrossRef] [Google Scholar]
- Brasseur, G.P., and S. Solomon, Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, Springer Netherlands, Dordrecht, Editor: L.A., Mysak, 2005. [Google Scholar]
- Cahalan, R.F., G. Wen, J.W. Harder, and P. Pilewskie, Temperature responses to spectral solar variability on decadal time scales, Geophys. Res. Lett., 37, L07705, DOI: 10.1029/2009GL041898, 2010. [CrossRef] [Google Scholar]
- Cessateur, G., T. Dudok de Wit, M. Kretzschmar, J. Lilensten, J.-F. Hochedez, and M. Snow, Monitoring the solar UV irradiance spectrum from the observation of a few passbands, A&A, 528, A68, DOI: 10.1051/0004-6361/201015903, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Cox, R.T., Probability, frequency, and reasonable expectation, Am. J. Phys., 14, 1–13, 1946. [NASA ADS] [CrossRef] [Google Scholar]
- Deland, M.T., and R.P. Cebula, Solar UV variations during the decline of Cycle 23, J. Atmos. Sol. Terr. Phys., 77, 225–234, DOI: 10.1016/j.jastp.2012.01.007, 2012. [NASA ADS] [CrossRef] [Google Scholar]
- Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al., Recent variability of the solar spectral irradiance and its impact on climate modelling, Atmos. Chem. Phys., 13, 3945–3977, DOI: 10.5194/acp-13-3945-2013, 2013. [Google Scholar]
- Fligge, M., S.K. Solanki, and Y.C. Unruh, Modelling irradiance variations from the surface distribution of the solar magnetic field, A&A, 353, 380–388, 2000. [Google Scholar]
- Fontenla, J.M., E.H. Avrett, and R. Loeser, Energy balance in the solar transition region. III – Helium emission in hydrostatic, constant-abundance models with diffusion, Astrophys. J., 406, 319–345, DOI: 10.1086/172443, 1993. [Google Scholar]
- Fröhlich, C., Evidence of a long-term trend in total solar irradiance, A&A, 501, L27–L30, DOI: 10.1051/0004-6361/200912318, 2009. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Haigh, J.D., A.R. Winning, R. Toumi, and J.W. Harder, An influence of solar spectral variations on radiative forcing of climate, Nature, 467, 696–699, 2010. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Harder, J., G. Lawrence, J. Fontenla, G. Rottman, and T. Woods, The spectral irradiance monitor: scientific requirements, instrument design, and operation modes, Sol. Phys., 230, 141–167, DOI: 10.1007/s11207-005-5007-5, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Harder, J.W., J.M. Fontenla, P. Pilewskie, E.C. Richard, and T.N. Woods, Trends in solar spectral irradiance variability in the visible and infrared, Geophys. Res. Lett., 36, 7801, DOI: 10.1029/2008GL036797, 2009. [NASA ADS] [CrossRef] [Google Scholar]
- Harfoot, M.B.J., D.J. Beerling, B.H. Lomax, and J.A. Pyle, A two-dimensional atmospheric chemistry modeling investigation of Earth’s Phanerozoic O3 and near-surface ultraviolet radiation history, J. Geophys. Res. [Atmos.], 112, D07308, DOI: 10.1029/2006JD007372, 2007. [NASA ADS] [CrossRef] [Google Scholar]
- Harwood, R.S., and J.A. Pyle, A two-dimensional mean circulation model for the atmosphere below 80 km, Q. J. Roy. Meteor. Soc., 101, 723–747, DOI: 10.1002/qj.49710143003, 1975. [CrossRef] [Google Scholar]
- Ineson, S., A.A. Scaife, J.R. Knight, J.C. Manners, N.J. Dunstone, L.J. Gray, and J.D. Haigh, Solar forcing of winter climate variability in the Northern Hemisphere, Nat. Geosci., 4, 753–757, DOI: 10.1038/ngeo1282, 2011. [Google Scholar]
- Jaynes, E.T., Probability Theory: The Logic of Science, Cambridge University Press, Cambridge, UK, 2003. [Google Scholar]
- Krivova, N.A., S.K. Solanki, M. Fligge, and Y.C. Unruh, Reconstruction of solar irradiance variations in cycle 23: is solar surface magnetism the cause? A&A, 399, L1–L4, DOI: 10.1051/0004-6361:20030029, 2003. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kurucz, R., ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. Kurucz CD-ROM No. 13, vol. 13, Smithsonian Astrophysical Observatory, Cambridge, Mass, 1993. [Google Scholar]
- Lay, R.R., K.A. Lee, J.R. Holden, J.E. Oswald, R.F. Jarnot, et al., On orbit commissioning of the Earth observing system microwave limb sounder (EOS MLS) on the Aura spacecraft. In: J.J., Butler, Editor, Earth Observing Systems X, vol. 5882 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 476–487, DOI: 10.1117/12.620146, 2005. [CrossRef] [Google Scholar]
- Lean, J., Evolution of the Sun’s spectral irradiance since the Maunder Minimum, Geophys. Res. Lett., 27, 2425–2428, DOI: 10.1029/2000GL000043, 2000. [CrossRef] [Google Scholar]
- Lean, J., G. Rottman, J. Harder, and G. Kopp, SORCE contributions to new understanding of global change and solar variability, Sol. Phys., 230, 27–53, DOI: 10.1007/s11207-005-1527-2, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Lean, J.L., M.T. DeLand, T.C.K. Lee, F.W. Zwiers, G.C. Hegerl, X. Zhang, and M. Tsao, How does the sun’s spectrum vary? J. Climate, 25, 2555–2560, DOI: 10.1175/JCLI-D-11-00571.1, 2012. [NASA ADS] [CrossRef] [Google Scholar]
- Lee, T.C.K., F.W. Zwiers, G.C. Hegerl, X. Zhang, and M. Tsao, A Bayesian climate change detection and attribution assessment, J. Climate, 18, 2429–2440, DOI: 10.1175/JCLI3402.1, 2005. [CrossRef] [Google Scholar]
- Lockwood, M., Was UV spectral solar irradiance lower during the recent low sunspot minimum? J. Geophys. Res. [Atmos.], 116 (D15), D16103, DOI: 10.1029/2010JD014746, 2011. [CrossRef] [Google Scholar]
- McClintock, W.E., G.J. Rottman, and T.N. Woods, Solar-stellar irradiance comparison experiment II (Solstice II): instrument concept and design, Sol. Phys., 230, 225–258, DOI: 10.1007/s11207-005-7432-x, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- McPeters, R.D., P.K. Bhartia, D. Haffner, G.J. Labow, and L. Flynn, The version 8.6 SBUV ozone data record: an overview, J. Geophys. Res. [Atmos.], 118, 8032–8039, DOI: 10.1002/jgrd.50597, 2013. [CrossRef] [Google Scholar]
- Meier, R.R., Ultraviolet spectroscopy and remote sensing of the upper atmosphere, Space Sci. Rev., 58, 1–185, DOI: 10.1007/BF01206000, 1991. [NASA ADS] [CrossRef] [Google Scholar]
- Merkel, A.W., J.W. Harder, D.R. Marsh, A.K. Smith, J.M. Fontenla, and T.N. Woods, The impact of solar spectral irradiance variability on middle atmospheric ozone, Geophys. Res. Lett., 38, L13802, DOI: 10.1029/2011GL047561, 2011. [Google Scholar]
- Pagaran, J., M. Weber, M.T. Deland, L.E. Floyd, and J.P. Burrows, Solar spectral irradiance variations in 240–1600 nm during the recent solar cycles 21–23, Sol. Phys., 272, 159–188, DOI: 10.1007/s11207-011-9808-4, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Rottman, G., The SORCE mission, Sol. Phys., 230, 7–25, DOI: 10.1007/s11207-005-8112-6, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Shapiro, A.V., E.V. Rozanov, A.I. Shapiro, T.A. Egorova, J. Harder, M. Weber, A.K. Smith, W. Schmutz, and T. Peter, The role of the solar irradiance variability in the evolution of the middle atmosphere during 2004–2009, J. Geophys. Res. [Atmos.], 118, 3781–3793, DOI: 10.1002/jgrd.50208, 2013. [Google Scholar]
- Snow, M., W.E. McClintock, T.N. Woods, O.R. White, J.W. Harder, and G. Rottman, The Mg II index from SORCE, Sol. Phys., 230, 325–344, DOI: 10.1007/s11207-005-6879-0, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Solanki, S.K., and Y.C. Unruh, A model of the wavelength dependence of solar irradiance variations, A&A, 329, 747–753, 1998. [Google Scholar]
- Soukharev, B.E., and L.L. Hood, Solar cycle variation of stratospheric ozone: multiple regression analysis of long-term satellite data sets and comparisons with models, J. Geophys. Res. [Atmos.], 111 (D10), D20314, DOI: 10.1029/2006JD007107, 2006. [Google Scholar]
- Swartz, W.H., R.S. Stolarski, L.D. Oman, E.L. Fleming, and C.H. Jackman, Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model, Atmos. Chem. Phys., 12, 5937–5948, DOI: 10.5194/acp-12-5937-2012, 2012. [CrossRef] [Google Scholar]
- Unruh, Y.C., S.K. Solanki, and M. Fligge, The spectral dependence of facular contrast and solar irradiance variations, A&A, 345, 635–642, 1999. [Google Scholar]
- Wang, S., K. Li, T. Pongetti, S. Sander, Y. Yung, et al., Midlatitude atmospheric OH response to the most recent 11-y solar cycle, Proc. Natl. Acad. Sci., 110, 1215–1220, DOI: 10.1073/pnas.1213389110, 2013. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.