J. Space Weather Space Clim.
Volume 6, 2016
Scientific Challenges in Thermosphere-Ionosphere Forecasting
Article Number A25
Number of page(s) 15
Published online 06 June 2016
  • Boudouridis, A., E. Zesta, L.R. Lyons, P.C. Anderson, and D. Lummerzheim. Effect of solar wind pressure pulses on the size and strength of the auroral oval. J. Geophys. Res., 108 (A4), 8012, 2003, DOI: 10.1029/2002JA009373. [CrossRef]
  • Boudouridis, A., E. Zesta, L.R. Lyons, P.C. Anderson, and D. Lummerzheim. Magnetospheric reconnection driven by solar wind pressure fronts. Ann. Geophys., 22, 1367–1378, 2004. [CrossRef]
  • Boudouridis, A., E. Zesta, L.R. Lyons, P.C. Anderson, and D. Lummerzheim. Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation. J. Geophys. Res., 110, A05214, 2005, DOI: 10.1029/2004JA010704. [NASA ADS] [CrossRef]
  • Boudouridis, A., E. Zesta, L.R. Lyons, P.C. Anderson, and A.J. Ridley. Temporal evolution of the transpolar potential after a sharp enhancement in solar wind dynamic pressure. Geophys. Res. Lett., 35, L02101, 2008, DOI: 10.1029/2007GL031766. [CrossRef]
  • Boudouridis, A., L.R. Lyons, E. Zesta, J.M. Weygand, A.J. Ribeiro, and J.M. Ruohoniemi. Statistical study of the effect of solar wind dynamic pressure fronts on the dayside and nightside ionospheric convection. J. Geophys. Res., 116, A10233, 2011, DOI: 10.1029/2011JA016582. [CrossRef]
  • Chiu, T. An improved phenomenological model of ionospheric density. J. Atmos. Terr. Phys., 37, 1563–1570, 1975. [NASA ADS] [CrossRef]
  • Codrescu, M.V., C. Negrea, M. Fedrizzi, T.J. Fuller-Rowell, A. Dobin, N. Jakowsky, H. Khalsa, T. Matsuo, and N. Maruyama. A real-time run of the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model. Space Weather, 10, S02001, 2012, DOI: 10.1029/2011SW000736. [CrossRef]
  • Connor, H.K., E. Zesta, D.M. Ober, and J. Raeder. The relation between transpolar potential and reconnection rates during sudden enhancement of solar wind dynamic pressure: OpenGGCM-CTIM results. J. Geophys. Res. [Space Phys.], 119, 3411–3429, 2014, DOI: 10.1002/2013JA019728. [CrossRef]
  • Crowley, G., D.J. Knipp, K.A. Drake, J. Lei, E. Sutton, and H. Lühr. Thermospheric density enhancements in the dayside cusp region during strong BY conditions. Geophys. Res. Lett., 37, L07110, 2010, DOI: 10.1029/2009GL042143. [CrossRef]
  • Deng, Y., A. Maute, A.D. Richmond, and R.G. Roble. Impact of electric field variability on Joule heating and thermospheric temperature and density. Geophys. Res. Lett., 36, L08105, 2009, DOI: 10.1029/2008GL036916.
  • Deng, Y., T.J. Fuller-Rowell, A.J. Ridley, D. Knipp, and R.E. Lopez. Theoretical study: influence of different energy sources on the cusp neutral density enhancement. J. Geophys. Res. [Space Phys.], 118, 2340–2349, 2013, DOI: 10.1002/jgra.50197. [CrossRef]
  • Fang, X., C.E. Randall, D. Lummerzheim, W. Wang, G. Lu, S.C. Solomon, and R.A. Frahm. Parameterization of monoenergetic electron impact ionization. Geophys. Res. Lett., 37, L22106, 2010, DOI: 10.1029/2010GL045406. [CrossRef]
  • Fedrizzi, M., T.J. Fuller-Rowell, and M.V. Codrescu. Global Joule heating index derived from thermospheric density physics-based modeling and observations. Space Weather, 10, S03001, 2012, DOI: 10.1029/2011SW000724. [CrossRef]
  • Fuller-Rowell, T.J., and D.S. Evans. Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data. J. Geophys. Res., 92 (A7), 7606–7618, 1987, DOI: 10.1029/JA092iA07p07606. [CrossRef]
  • Fuller-Rowell, T.J., D. Rees, S. Quegan, R.J. Moffett, M.V. Codrescu, and G.H. Millward. A coupled thermosphere-ionosphere model (CTIM). In: R.W. Schunk, Editor, Solar-Terrestrial Energy Program: Handbook of Ionospheric Models, Cent. for Atmos. and Space Sci., Utah State Univ., Logan, Utah, 217–238, 1996.
  • Fuller-Rowell, T., M. Codrescu, N. Maruyama, M. Fredrizzi, E. Araujo-Pradere, S. Sazykin, and G. Bust. Observed and modeled thermosphere and ionosphere response to superstorms. Radio Sci., 42, RS4S90, 2007, DOI: 10.1029/2005RS003392. [CrossRef]
  • Galand, M., D. Lummerzheim, A.W. Stephan, B.C. Bush, and S. Chakrabarti. Electron and proton aurora observed spectroscopically in the far ultraviolet. J. Geophys. Res., 107 (A7), 1–14, 2002, DOI: 10.1029/2001JA000235. [CrossRef]
  • Gilson, M.L., J. Raeder, E. Donovan, Y.S. Ge, and L. Kepko. Global simulation of proton precipitation due to field line curvature during substorms. J. Geophys. Res., 117, A05216, 2012, DOI: 10.1029/2012JA017562. [CrossRef]
  • Hecht, J.H., T. Mulligan, D.J. Strickland, A.J. Kochenash, Y. Murayama, et al. Satellite and ground-based observations of auroral energy deposition and the effects on thermospheric composition during large geomagnetic storms: 1. Great geomagnetic storm of 20 November. J. Geophys. Res., 113, A01310, 2008, DOI: 10.1029/2007JA012365. [CrossRef]
  • Heelis, R.A., J.K. Lowell, and R.W. Spiro. A model of the high-latitude ionospheric convection pattern. J. Geophys. Res., 87, 6339, 1982. [CrossRef]
  • Huang, Y., C.Y. Huang, Y.-J. Su, Y. Deng, and X. Fang. Ionization due to electron and proton precipitation during the August 2011 storm. J. Geophys. Res. [Space Phys.], 119, 3106–3116, 2014, DOI: 10.1002/2013JA019671. [CrossRef]
  • Kaeppler, S.R., D.L. Hampton, M.J. Nicolls, A. Strømme, S.C. Solomon, J.H. Hecht, and M.G. Conde. An investigation comparing ground-based techniques that quantify auroral electron flux and conductance. J. Geophys. Res. [Space Phys.], 120, 9038–9056, 2015, DOI: 10.1002/2015JA021396. [CrossRef]
  • Kennel, C.F., and H.E. Petschek. Limit on stably trapped particle fluxes. J. Geophys. Res., 71, 1, 1966. [NASA ADS] [CrossRef]
  • Kelley, M.C. The Earth’s Ionosphere, Academic Press, New York, 1989.
  • Khazanov, G.V., A. Glocer, and E.W. Himwich. Magnetosphere-ionosphere energy interchange in the electron diffuse aurora. J. Geophys. Res. [Space Phys.], 119, 171–184, 2014, DOI: 10.1002/2013JA019325. [CrossRef]
  • Knight, S. Parallel electric fields. Planet. Space Sci., 21, 741, 1973. [CrossRef]
  • Knipp, D.J., and B.A. Emery. Mapping ionospheric substorm response. Adv. Space Res., 20 (4/5), 895–905, 1997. [CrossRef]
  • Knipp, D., S. Eriksson, L. Kilcommons, G. Crowley, J. Lei, M. Hairston, and K. Drake. Extreme Poynting flux in the dayside thermosphere: examples and statistics. Geophys. Res. Lett., 38, L16102, 2011, DOI: 10.1029/2011GL048302. [CrossRef]
  • Lei, J., W. Wang, A.G. Burns, S.C. Solomon, A.D. Richmond, M. Wiltberger, L.P. Goncharenko, A. Coster, and B.W. Reinisch. Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: initial phase. J. Geophys. Res., 113, A01314, 2008, DOI: 10.1029/2007JA012807.
  • Li, W., D. Knipp, J. Lei, and J. Raeder. The relation between dayside local Poynting flux enhancement and cusp reconnection. J. Geophys. Res., 116, A08301, 2011, DOI: 10.1029/2011JA016566.
  • Lyons, L.R., D. Evans, and R. Lundin. An observed relation between magnetic field aligned electric fields and downward electron energy fluxes in the vicinity of auroral forms. J. Geophys. Res., 84, 457, 1979. [CrossRef]
  • McIntosh, R.C., and P.C. Anderson. Maps of precipitating electron spectra characterized by Maxwellian and kappa distributions. J. Geophys. Res. [Space Phys.], 119, 10116–10132, 2014, DOI: 10.1002/2014JA020080. [CrossRef]
  • Millward, G.H., R.J. Moffett, S. Quegan, and T.J. Fuller-Rowell. A coupled thermosphere-ionosphere-plasmasphere model (CTIP). In: R.W. Schunk, Editor, Solar-Terrestrial Energy Program: Handbook of Ionospheric Models, Cent. for Atmos. and Space Sci., Utah State Univ., Logan, Utah, 239–279, 1996.
  • Millward, G.H., I.C.F. Müller-Wodarg, A.D. Aylward, T.J. Fuller-Rowell, A.D. Richmond, and R.J. Moffett. An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. J. Geophys. Res., 106 (A11), 24733–24744, 2001, DOI: 10.1029/2000JA000342. [CrossRef]
  • Newell, P.T., T. Sotirelis, and S. Wing. Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J. Geophys. Res., 114, A09207, 2009, DOI: 10.1029/2009JA014326. [CrossRef]
  • Newell, P.T., K. Liou, Y. Zhang, T. Sotirelis, L.J. Paxton, and E.J. Mitchell. OVATION Prime-2013: extension of auroral precipitation model to higher disturbance levels. Space Weather, 12, 368–379, 2014, DOI: 10.1002/2014SW001056. [CrossRef]
  • Raeder, J. Global magnetohydrodynamics – a tutorial. In: J. Buechner, C.T. Dum, and M. Scholer, Editors, Space Plasma Simulation, Lecture Notes in Physics, Springer-Verlag, Heidelberg, Germany, 615, 2003.
  • Raeder, J., and G. Lu. Polar cap potential saturation during large geomagnetic storms. Adv. Space Res., 36, 1804, 2005. [CrossRef]
  • Raeder, J., R.L. McPherron, L.A. Frank, S. Kokubun, G. Lu, et al. Global simulation of the geospace environment modeling substorm challenge event. J. Geophys. Res., 106, 381, 2001a. [CrossRef]
  • Raeder, J., Y. Wang, and T. Fuller-Rowell. Geomagnetic storm simulation with a coupled magnetosphere-ionosphere-thermosphere model. In: P. Song, H.J. Singer, and G. Siscoe, Editors, Space Weather: Progress and Challenges in Research and Applications, Geophys. Monogr. Ser., vol. 125, AGU, Washington, DC, 377–384, 2001b.
  • Raeder, J., D. Larson, W. Li, E.L. Kepko, and T. Fuller-Rowell. OpenGGCM simulations for the THEMIS mission. Space Sci. Rev., 141, 535–555, 2008, DOI: 10.1007/s11214-0421-5. [CrossRef]
  • Richmond, A.D., and Y. Kamide. Mapping electrodynamic features of the high latitude ionosphere from localized observations. J. Geophys. Res., 93, 5741, 1988. [CrossRef]
  • Richmond, A.D., and G. Lu. Upper-atmospheric effects of magnetic storms: a brief tutorial. J. Atmos. Sol. Terr. Phys., 62, 1115–1127, 2000, DOI: 10.1016/S1364-6826(00)00094-8. [CrossRef]
  • Ridley, A.J., T.I. Gombosi, and D.L. DeZeeuw. Ionospheric control of the magnetosphere: conductance. Ann. Geophys., 22, 567–584, 2004, DOI: 10.5194/angeo-22-567-2004. [CrossRef]
  • Robinson, R.M., R.R. Vondrak, K. Miller, T. Dabbs, and D. Hardy. On calculating ionospheric conductances from the flux and energy of precipitating electrons. J. Geophys. Res., 92, 2565, 1987. [CrossRef]
  • Roble, R.G., and E.C. Ridley. An auroral model for the NCAR thermospheric general circulation model (TGCM). Ann. Geophys., 5, 369–382, 1987.
  • Schlegel, K., H. Lühr, J.P. St. Maurice, G. Crowley, and C. Hackert. Thermospheric density structures over the polar regions observed with CHAMP. Ann. Geophys., 23, 1659–1672, 2005. [CrossRef]
  • Semeter, J., and R. Doe. On the proper interpretation of ionospheric conductance estimated through satellite photometry. J. Geophys. Res., 107, A8, 2002, DOI: 10.1029/2001JA009101. [CrossRef]
  • Shi, Y., E. Zesta, and L.R. Lyons. Modeling magnetospheric current response to solar wind dynamic pressure enhancements during magnetic storms: 1. Methodology and results of the 25 September 1998 peak main phase case. J. Geophys. Res., 113, A10218, 2008, DOI: 10.1029/2008JA013111.
  • Thayer, J.P., and J. Semeter. The convergence of magnetospheric energy flux in the polar atmosphere. J. Atmos. Sol. Terr. Phys., 66, 807–824, 2004. [CrossRef]
  • Vasyliunas, V.M. Mathematical models of magnetospheric convection and its coupling to the ionosphere. In: B.M. McCormac, Editor, Particles and Fields in the Magnetosphere, D. Reidel, Norwell, Mass, 61–71, 1970.
  • Wang, W., M. Wiltberger, A.G. Burns, S. Solomon, T.L. Killeen, N. Maruyama, and J. Lyon. Initial results from the CISM coupled magnetosphere-ionosphere-thermosphere (CMIT) model: thermosphere ionosphere responses. J. Atmos. Sol. Terr. Phys., 66, 1425–1442, 2004, DOI: 10.1016/j.jastp.2004.04.008. [CrossRef]
  • Wang, W., J. Lei, A.G. Burns, M. Wiltberger, A.D. Richmond, S.C. Solomon, T.L. Killeen, E.R. Talaat, and D.N. Anderson. Ionospheric electric field variations during a geomagnetic storm simulated by a coupled magnetosphere ionosphere thermosphere (CMIT) model. Geophys. Res. Lett., 35, L18105, 2008, DOI: 10.1029/2008GL035155. [CrossRef]
  • Wang, W., J. Lei, A.G. Burns, S.C. Solomon, M. Wiltberger, J. Xu, Y. Zhang, L. Paxton, and A. Coster. Ionospheric response to the initial phase of geomagnetic storms: common features. J. Geophys. Res., 115, A07321, 2010, DOI: 10.1029/2009JA014461.
  • Weimer, D.R. Predicting surface geomagnetic variations using ionospheric electrodynamic models. J. Geophys. Res., 110, 12307, 2005, DOI: 10.1029/2005JA011270. [CrossRef]
  • Wilson, G.R., D.R. Weimer, J.O. Wise, and F.A. Marcos. Response of the thermosphere to Joule heating and particle precipitation. J. Geophys. Res., 111, A10314, 2006, DOI: 10.1029/2005JA011274. [CrossRef]
  • Zesta, E., H.J. Singer, D. Lummerzheim, C.T. Russell, L.R. Lyons, and M.J. Brittnacher. The effect of the January 10, 1997, pressure pulse on the magnetosphere-ionosphere current system. In: S. Ohtani, et al. Editors, Magnetospheric Current Systems, Geophys. Monogr. Ser., vol. 118, AGU, Washington, DC, 217–226, 2000. [CrossRef]
  • Zhang, B., W. Lotko, O. Brambles, M. Wiltberger, W. Wang, P. Schmitt, and J. Lyon. Enhancement of thermospheric mass density by soft electron precipitation. Geophys. Res. Lett., 39, L20102, 2012, DOI: 10.1029/2012GL053519. [CrossRef]
  • Zhang, B., W. Lotko, O. Brambles, M. Wiltberger, and J. Lyon. Electron precipitation models in global magnetosphere simulations. J. Geophys. Res. [Space Phys.], 120, 1–2, 2015a, DOI: 10.1002/2014JA020615. [CrossRef]
  • Zhang, B., R.H. Varney, W. Lotko, O.J. Brambles, W. Wang, J. Lei, M. Wiltberger, and J.G. Lyon. Pathways of F region thermospheric mass density enhancement via soft electron precipitation. J. Geophys. Res. [Space Phys.], 120, 5824–5831, 2015b, DOI: 10.1002/2015JA020999. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.