Issue
J. Space Weather Space Clim.
Volume 6, 2016
Scientific Challenges in Thermosphere-Ionosphere Forecasting
Article Number A25
Number of page(s) 15
DOI https://doi.org/10.1051/swsc/2016019
Published online 06 June 2016
  • Boudouridis, A., E. Zesta, L.R. Lyons, P.C. Anderson, and D. Lummerzheim. Effect of solar wind pressure pulses on the size and strength of the auroral oval. J. Geophys. Res., 108 (A4), 8012, 2003, DOI: 10.1029/2002JA009373. [CrossRef] [Google Scholar]
  • Boudouridis, A., E. Zesta, L.R. Lyons, P.C. Anderson, and D. Lummerzheim. Magnetospheric reconnection driven by solar wind pressure fronts. Ann. Geophys., 22, 1367–1378, 2004. [CrossRef] [Google Scholar]
  • Boudouridis, A., E. Zesta, L.R. Lyons, P.C. Anderson, and D. Lummerzheim. Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation. J. Geophys. Res., 110, A05214, 2005, DOI: 10.1029/2004JA010704. [NASA ADS] [CrossRef] [Google Scholar]
  • Boudouridis, A., E. Zesta, L.R. Lyons, P.C. Anderson, and A.J. Ridley. Temporal evolution of the transpolar potential after a sharp enhancement in solar wind dynamic pressure. Geophys. Res. Lett., 35, L02101, 2008, DOI: 10.1029/2007GL031766. [CrossRef] [Google Scholar]
  • Boudouridis, A., L.R. Lyons, E. Zesta, J.M. Weygand, A.J. Ribeiro, and J.M. Ruohoniemi. Statistical study of the effect of solar wind dynamic pressure fronts on the dayside and nightside ionospheric convection. J. Geophys. Res., 116, A10233, 2011, DOI: 10.1029/2011JA016582. [CrossRef] [Google Scholar]
  • Chiu, T. An improved phenomenological model of ionospheric density. J. Atmos. Terr. Phys., 37, 1563–1570, 1975. [NASA ADS] [CrossRef] [Google Scholar]
  • Codrescu, M.V., C. Negrea, M. Fedrizzi, T.J. Fuller-Rowell, A. Dobin, N. Jakowsky, H. Khalsa, T. Matsuo, and N. Maruyama. A real-time run of the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model. Space Weather, 10, S02001, 2012, DOI: 10.1029/2011SW000736. [CrossRef] [Google Scholar]
  • Connor, H.K., E. Zesta, D.M. Ober, and J. Raeder. The relation between transpolar potential and reconnection rates during sudden enhancement of solar wind dynamic pressure: OpenGGCM-CTIM results. J. Geophys. Res. [Space Phys.], 119, 3411–3429, 2014, DOI: 10.1002/2013JA019728. [CrossRef] [Google Scholar]
  • Crowley, G., D.J. Knipp, K.A. Drake, J. Lei, E. Sutton, and H. Lühr. Thermospheric density enhancements in the dayside cusp region during strong BY conditions. Geophys. Res. Lett., 37, L07110, 2010, DOI: 10.1029/2009GL042143. [CrossRef] [Google Scholar]
  • Deng, Y., A. Maute, A.D. Richmond, and R.G. Roble. Impact of electric field variability on Joule heating and thermospheric temperature and density. Geophys. Res. Lett., 36, L08105, 2009, DOI: 10.1029/2008GL036916. [Google Scholar]
  • Deng, Y., T.J. Fuller-Rowell, A.J. Ridley, D. Knipp, and R.E. Lopez. Theoretical study: influence of different energy sources on the cusp neutral density enhancement. J. Geophys. Res. [Space Phys.], 118, 2340–2349, 2013, DOI: 10.1002/jgra.50197. [CrossRef] [Google Scholar]
  • Fang, X., C.E. Randall, D. Lummerzheim, W. Wang, G. Lu, S.C. Solomon, and R.A. Frahm. Parameterization of monoenergetic electron impact ionization. Geophys. Res. Lett., 37, L22106, 2010, DOI: 10.1029/2010GL045406. [CrossRef] [Google Scholar]
  • Fedrizzi, M., T.J. Fuller-Rowell, and M.V. Codrescu. Global Joule heating index derived from thermospheric density physics-based modeling and observations. Space Weather, 10, S03001, 2012, DOI: 10.1029/2011SW000724. [CrossRef] [Google Scholar]
  • Fuller-Rowell, T.J., and D.S. Evans. Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data. J. Geophys. Res., 92 (A7), 7606–7618, 1987, DOI: 10.1029/JA092iA07p07606. [CrossRef] [Google Scholar]
  • Fuller-Rowell, T.J., D. Rees, S. Quegan, R.J. Moffett, M.V. Codrescu, and G.H. Millward. A coupled thermosphere-ionosphere model (CTIM). In: R.W. Schunk, Editor, Solar-Terrestrial Energy Program: Handbook of Ionospheric Models, Cent. for Atmos. and Space Sci., Utah State Univ., Logan, Utah, 217–238, 1996. [Google Scholar]
  • Fuller-Rowell, T., M. Codrescu, N. Maruyama, M. Fredrizzi, E. Araujo-Pradere, S. Sazykin, and G. Bust. Observed and modeled thermosphere and ionosphere response to superstorms. Radio Sci., 42, RS4S90, 2007, DOI: 10.1029/2005RS003392. [CrossRef] [Google Scholar]
  • Galand, M., D. Lummerzheim, A.W. Stephan, B.C. Bush, and S. Chakrabarti. Electron and proton aurora observed spectroscopically in the far ultraviolet. J. Geophys. Res., 107 (A7), 1–14, 2002, DOI: 10.1029/2001JA000235. [CrossRef] [Google Scholar]
  • Gilson, M.L., J. Raeder, E. Donovan, Y.S. Ge, and L. Kepko. Global simulation of proton precipitation due to field line curvature during substorms. J. Geophys. Res., 117, A05216, 2012, DOI: 10.1029/2012JA017562. [CrossRef] [Google Scholar]
  • Hecht, J.H., T. Mulligan, D.J. Strickland, A.J. Kochenash, Y. Murayama, et al. Satellite and ground-based observations of auroral energy deposition and the effects on thermospheric composition during large geomagnetic storms: 1. Great geomagnetic storm of 20 November. J. Geophys. Res., 113, A01310, 2008, DOI: 10.1029/2007JA012365. [CrossRef] [Google Scholar]
  • Heelis, R.A., J.K. Lowell, and R.W. Spiro. A model of the high-latitude ionospheric convection pattern. J. Geophys. Res., 87, 6339, 1982. [CrossRef] [Google Scholar]
  • Huang, Y., C.Y. Huang, Y.-J. Su, Y. Deng, and X. Fang. Ionization due to electron and proton precipitation during the August 2011 storm. J. Geophys. Res. [Space Phys.], 119, 3106–3116, 2014, DOI: 10.1002/2013JA019671. [CrossRef] [Google Scholar]
  • Kaeppler, S.R., D.L. Hampton, M.J. Nicolls, A. Strømme, S.C. Solomon, J.H. Hecht, and M.G. Conde. An investigation comparing ground-based techniques that quantify auroral electron flux and conductance. J. Geophys. Res. [Space Phys.], 120, 9038–9056, 2015, DOI: 10.1002/2015JA021396. [CrossRef] [Google Scholar]
  • Kennel, C.F., and H.E. Petschek. Limit on stably trapped particle fluxes. J. Geophys. Res., 71, 1, 1966. [NASA ADS] [CrossRef] [Google Scholar]
  • Kelley, M.C. The Earth’s Ionosphere, Academic Press, New York, 1989. [Google Scholar]
  • Khazanov, G.V., A. Glocer, and E.W. Himwich. Magnetosphere-ionosphere energy interchange in the electron diffuse aurora. J. Geophys. Res. [Space Phys.], 119, 171–184, 2014, DOI: 10.1002/2013JA019325. [CrossRef] [Google Scholar]
  • Knight, S. Parallel electric fields. Planet. Space Sci., 21, 741, 1973. [CrossRef] [Google Scholar]
  • Knipp, D.J., and B.A. Emery. Mapping ionospheric substorm response. Adv. Space Res., 20 (4/5), 895–905, 1997. [CrossRef] [Google Scholar]
  • Knipp, D., S. Eriksson, L. Kilcommons, G. Crowley, J. Lei, M. Hairston, and K. Drake. Extreme Poynting flux in the dayside thermosphere: examples and statistics. Geophys. Res. Lett., 38, L16102, 2011, DOI: 10.1029/2011GL048302. [CrossRef] [Google Scholar]
  • Lei, J., W. Wang, A.G. Burns, S.C. Solomon, A.D. Richmond, M. Wiltberger, L.P. Goncharenko, A. Coster, and B.W. Reinisch. Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: initial phase. J. Geophys. Res., 113, A01314, 2008, DOI: 10.1029/2007JA012807. [Google Scholar]
  • Li, W., D. Knipp, J. Lei, and J. Raeder. The relation between dayside local Poynting flux enhancement and cusp reconnection. J. Geophys. Res., 116, A08301, 2011, DOI: 10.1029/2011JA016566. [Google Scholar]
  • Lyons, L.R., D. Evans, and R. Lundin. An observed relation between magnetic field aligned electric fields and downward electron energy fluxes in the vicinity of auroral forms. J. Geophys. Res., 84, 457, 1979. [CrossRef] [Google Scholar]
  • McIntosh, R.C., and P.C. Anderson. Maps of precipitating electron spectra characterized by Maxwellian and kappa distributions. J. Geophys. Res. [Space Phys.], 119, 10116–10132, 2014, DOI: 10.1002/2014JA020080. [CrossRef] [Google Scholar]
  • Millward, G.H., R.J. Moffett, S. Quegan, and T.J. Fuller-Rowell. A coupled thermosphere-ionosphere-plasmasphere model (CTIP). In: R.W. Schunk, Editor, Solar-Terrestrial Energy Program: Handbook of Ionospheric Models, Cent. for Atmos. and Space Sci., Utah State Univ., Logan, Utah, 239–279, 1996. [Google Scholar]
  • Millward, G.H., I.C.F. Müller-Wodarg, A.D. Aylward, T.J. Fuller-Rowell, A.D. Richmond, and R.J. Moffett. An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. J. Geophys. Res., 106 (A11), 24733–24744, 2001, DOI: 10.1029/2000JA000342. [CrossRef] [Google Scholar]
  • Newell, P.T., T. Sotirelis, and S. Wing. Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J. Geophys. Res., 114, A09207, 2009, DOI: 10.1029/2009JA014326. [NASA ADS] [CrossRef] [Google Scholar]
  • Newell, P.T., K. Liou, Y. Zhang, T. Sotirelis, L.J. Paxton, and E.J. Mitchell. OVATION Prime-2013: extension of auroral precipitation model to higher disturbance levels. Space Weather, 12, 368–379, 2014, DOI: 10.1002/2014SW001056. [CrossRef] [Google Scholar]
  • Raeder, J. Global magnetohydrodynamics – a tutorial. In: J. Buechner, C.T. Dum, and M. Scholer, Editors, Space Plasma Simulation, Lecture Notes in Physics, Springer-Verlag, Heidelberg, Germany, 615, 2003. [Google Scholar]
  • Raeder, J., and G. Lu. Polar cap potential saturation during large geomagnetic storms. Adv. Space Res., 36, 1804, 2005. [CrossRef] [Google Scholar]
  • Raeder, J., R.L. McPherron, L.A. Frank, S. Kokubun, G. Lu, et al. Global simulation of the geospace environment modeling substorm challenge event. J. Geophys. Res., 106, 381, 2001a. [CrossRef] [Google Scholar]
  • Raeder, J., Y. Wang, and T. Fuller-Rowell. Geomagnetic storm simulation with a coupled magnetosphere-ionosphere-thermosphere model. In: P. Song, H.J. Singer, and G. Siscoe, Editors, Space Weather: Progress and Challenges in Research and Applications, Geophys. Monogr. Ser., vol. 125, AGU, Washington, DC, 377–384, 2001b. [Google Scholar]
  • Raeder, J., D. Larson, W. Li, E.L. Kepko, and T. Fuller-Rowell. OpenGGCM simulations for the THEMIS mission. Space Sci. Rev., 141, 535–555, 2008, DOI: 10.1007/s11214-0421-5. [CrossRef] [Google Scholar]
  • Richmond, A.D., and Y. Kamide. Mapping electrodynamic features of the high latitude ionosphere from localized observations. J. Geophys. Res., 93, 5741, 1988. [CrossRef] [Google Scholar]
  • Richmond, A.D., and G. Lu. Upper-atmospheric effects of magnetic storms: a brief tutorial. J. Atmos. Sol. Terr. Phys., 62, 1115–1127, 2000, DOI: 10.1016/S1364-6826(00)00094-8. [CrossRef] [Google Scholar]
  • Ridley, A.J., T.I. Gombosi, and D.L. DeZeeuw. Ionospheric control of the magnetosphere: conductance. Ann. Geophys., 22, 567–584, 2004, DOI: 10.5194/angeo-22-567-2004. [CrossRef] [Google Scholar]
  • Robinson, R.M., R.R. Vondrak, K. Miller, T. Dabbs, and D. Hardy. On calculating ionospheric conductances from the flux and energy of precipitating electrons. J. Geophys. Res., 92, 2565, 1987. [CrossRef] [Google Scholar]
  • Roble, R.G., and E.C. Ridley. An auroral model for the NCAR thermospheric general circulation model (TGCM). Ann. Geophys., 5, 369–382, 1987. [Google Scholar]
  • Schlegel, K., H. Lühr, J.P. St. Maurice, G. Crowley, and C. Hackert. Thermospheric density structures over the polar regions observed with CHAMP. Ann. Geophys., 23, 1659–1672, 2005. [CrossRef] [Google Scholar]
  • Semeter, J., and R. Doe. On the proper interpretation of ionospheric conductance estimated through satellite photometry. J. Geophys. Res., 107, A8, 2002, DOI: 10.1029/2001JA009101. [CrossRef] [Google Scholar]
  • Shi, Y., E. Zesta, and L.R. Lyons. Modeling magnetospheric current response to solar wind dynamic pressure enhancements during magnetic storms: 1. Methodology and results of the 25 September 1998 peak main phase case. J. Geophys. Res., 113, A10218, 2008, DOI: 10.1029/2008JA013111. [Google Scholar]
  • Thayer, J.P., and J. Semeter. The convergence of magnetospheric energy flux in the polar atmosphere. J. Atmos. Sol. Terr. Phys., 66, 807–824, 2004. [CrossRef] [Google Scholar]
  • Vasyliunas, V.M. Mathematical models of magnetospheric convection and its coupling to the ionosphere. In: B.M. McCormac, Editor, Particles and Fields in the Magnetosphere, D. Reidel, Norwell, Mass, 61–71, 1970. [Google Scholar]
  • Wang, W., M. Wiltberger, A.G. Burns, S. Solomon, T.L. Killeen, N. Maruyama, and J. Lyon. Initial results from the CISM coupled magnetosphere-ionosphere-thermosphere (CMIT) model: thermosphere ionosphere responses. J. Atmos. Sol. Terr. Phys., 66, 1425–1442, 2004, DOI: 10.1016/j.jastp.2004.04.008. [CrossRef] [Google Scholar]
  • Wang, W., J. Lei, A.G. Burns, M. Wiltberger, A.D. Richmond, S.C. Solomon, T.L. Killeen, E.R. Talaat, and D.N. Anderson. Ionospheric electric field variations during a geomagnetic storm simulated by a coupled magnetosphere ionosphere thermosphere (CMIT) model. Geophys. Res. Lett., 35, L18105, 2008, DOI: 10.1029/2008GL035155. [CrossRef] [Google Scholar]
  • Wang, W., J. Lei, A.G. Burns, S.C. Solomon, M. Wiltberger, J. Xu, Y. Zhang, L. Paxton, and A. Coster. Ionospheric response to the initial phase of geomagnetic storms: common features. J. Geophys. Res., 115, A07321, 2010, DOI: 10.1029/2009JA014461. [Google Scholar]
  • Weimer, D.R. Predicting surface geomagnetic variations using ionospheric electrodynamic models. J. Geophys. Res., 110, 12307, 2005, DOI: 10.1029/2005JA011270. [CrossRef] [Google Scholar]
  • Wilson, G.R., D.R. Weimer, J.O. Wise, and F.A. Marcos. Response of the thermosphere to Joule heating and particle precipitation. J. Geophys. Res., 111, A10314, 2006, DOI: 10.1029/2005JA011274. [CrossRef] [Google Scholar]
  • Zesta, E., H.J. Singer, D. Lummerzheim, C.T. Russell, L.R. Lyons, and M.J. Brittnacher. The effect of the January 10, 1997, pressure pulse on the magnetosphere-ionosphere current system. In: S. Ohtani, et al. Editors, Magnetospheric Current Systems, Geophys. Monogr. Ser., vol. 118, AGU, Washington, DC, 217–226, 2000. [CrossRef] [Google Scholar]
  • Zhang, B., W. Lotko, O. Brambles, M. Wiltberger, W. Wang, P. Schmitt, and J. Lyon. Enhancement of thermospheric mass density by soft electron precipitation. Geophys. Res. Lett., 39, L20102, 2012, DOI: 10.1029/2012GL053519. [CrossRef] [Google Scholar]
  • Zhang, B., W. Lotko, O. Brambles, M. Wiltberger, and J. Lyon. Electron precipitation models in global magnetosphere simulations. J. Geophys. Res. [Space Phys.], 120, 1–2, 2015a, DOI: 10.1002/2014JA020615. [CrossRef] [Google Scholar]
  • Zhang, B., R.H. Varney, W. Lotko, O.J. Brambles, W. Wang, J. Lei, M. Wiltberger, and J.G. Lyon. Pathways of F region thermospheric mass density enhancement via soft electron precipitation. J. Geophys. Res. [Space Phys.], 120, 5824–5831, 2015b, DOI: 10.1002/2015JA020999. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.