Open Access
Issue |
J. Space Weather Space Clim.
Volume 6, 2016
|
|
---|---|---|
Article Number | A23 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/swsc/2016018 | |
Published online | 13 May 2016 |
- Brodrick, D., S. Tingay, and M. Wieringa. X-ray magnitude of the 4 November 2003 solar flare inferred from the ionospheric attenuation of the galactic radio background. J. Geophys. Res., 110, A09S36, 2005, DOI: 10.1029/2004JA010960. [Google Scholar]
- Cannon, P.S. Extreme Space Weather – a report published by the UK Royal Academy of Engineering. Space Weather, 11, 138–139, 2013, DOI: 10.1002/swe.20032. [CrossRef] [Google Scholar]
- Carrington, R.C. Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. Roy. Astron. Soc., 20, 13–14, 1860. [Google Scholar]
- Clarke, E., C. Rodger, M. Clilverd, T. Humphries, O. Baillie, and A. Thompson. An estimation of the Carrington flare magnitude from solar flare effects (sfe) in the geomagnetic records 2010, Royal Astron. Soc. National Astron. Meeting, University of Glasgow, UK, 2010. [Google Scholar]
- Cliver, E.W. The 1859 space weather event: then and now. Adv. Space Res., 38, 119–129, 2006. [CrossRef] [Google Scholar]
- Cliver, E.W., and W.F. Dietrich. The 1859 space weather event revisited: limits of extreme activity. J. Space Weather Space Clim., 3, A31, 2013, DOI: 10.1051/swsc/2013053. [CrossRef] [EDP Sciences] [Google Scholar]
- Cliver, E.W., and L. Svalgaard. The 1859 solar-terrestrial disturbance and the current limits of extreme space weather activity. Sol. Phys., 224, 407–422, 2004. [Google Scholar]
- Curto, J.J., C. Amory-Mazaudier, J.O. Cardús, J.M. Torta, and M. Menvielle. Solar flare effects at Ebre: regular and reversed solar flare effects, statistical analysis (1953 to 1985), a global case study and a model of elliptical ionospheric currents. J. Geophys. Res., 99 (A3), 3945–3954, 1994a. [Google Scholar]
- Curto, J.J., C. Amory-Mazaudier, J.O. Cardús, J.M. Torta, and M. Menvielle. Solar flare effects at Ebre: unidimensional physical, integrated model. J. Geophys. Res., 99 (A12), 23289–23296, 1994b. [Google Scholar]
- Curto, J.J., E. Sanclement, and J.M. Torta. Automatic measurement of magnetic records on photographic paper. Comput. Geosci., 22 (4), 359–368, 1996. [CrossRef] [Google Scholar]
- Curto, J.J., L.F. Alberca, and J. Castell. Dynamic aspects of the Solar flare effects and their impact in the detection procedures. J. Ind. Geophys. Union, 2, 99–104, 2016. [Google Scholar]
- Fréchet, M. Sur la loi de probabilité de l’écartmaximum. Ann. Soc. Polon. Math., 6, 93, 1927. [Google Scholar]
- Gopalswamy, N., L. Barbieri, E.W. Cliver, G. Lu, S.P. Plunkett, and R.M. Skoug. Introduction to violent Sun-Earth connection events of October–November 2003. J. Gepohys. Res., 110, A09S15, 2005, DOI: 10.1029/2004JA010958. [Google Scholar]
- Gumbel, E.J. Statistical theory of extreme values and some practical applications, Applied Mathematics Series 33, 1st ed., U.S. Department of Commerce, National Bureau of Standards, 1954. [Google Scholar]
- Hodgson, R. On a curious appearance seen in the Sun. Mon. Not. Roy. Astron. Soc., 20, 15, 1860. [Google Scholar]
- Ibáñez Rosales, A. Análisis estadístico de valores extremos y aplicaciones, Report of Universidad de Granada, 2011. [Google Scholar]
- Kiplinger, A.L., and H.A. Garcia. Soft X-ray parameters of the great flares of active region 486. Bull. Am. Astron. Soc., 36, 739, 2004. [Google Scholar]
- Lanzerotti, L.J. Geomagnetic influences on man-made systems. J. Atmos. Terr. Phys., 41, 787–796, 1979. [Google Scholar]
- Lanzerotti, L.J. Geomagnetic induction effects in ground-based systems. Space Sci. Rev., 34, 347–356, 1983. [Google Scholar]
- Le, H., L. Liu, H. He, and W. Wan. Statistical analysis of solar EUV and X-ray flux enhancements induced by solar flares and its implication to upper atmosphere. J. Geophys. Res., 116 (A11), A11301, 2011, DOI: 10.1029/2011JA016704. [Google Scholar]
- NOAA. Space environment center preliminary report and forecast of solar geophysical data, Rep. 1471, Silver Spring, Maryland, 2003. [Google Scholar]
- Riley, P. On the probability of occurrence of extreme space weather events. Space Weather, 10, S02012, 2012, DOI: 10.1029/2011SW000734. [NASA ADS] [CrossRef] [Google Scholar]
- Schulte in den Bäumen, H., D. Moran, M. Lenzen, I. Cairns, and A. Steenge. How severe space weather can disrupt global supply chains. Nat. Hazards Earth Syst. Sci., 14, 2749–2759, 2014. [Google Scholar]
- Thomson, A.W.P., E.B. Dawson, and S.J. Reay. Quantifying extreme behavior in geomagnetic activity. Space Weather, 9, S10001, 2011, DOI: 10.1029/2011SW000696. [CrossRef] [Google Scholar]
- Thomson, N.R., C.J. Rodger, and R.L. Dowden. Ionosphere gives size of greatest solar flare. Geophys. Res. Lett., 31, L06803, 2004, DOI: 10.1029/2003GL019345. [Google Scholar]
- Thomson, N.R., C.J. Rodger, and M.A. Clilverd. Large solar flares and their ionospheric D-region enhancements. J. Geophys. Res., 110, A06306, 2005, DOI: 10.1029/2005JA011008. [Google Scholar]
- Tranquille, C., K. Hurley, and H.S. Hudson. The Ulysses catalog of solar hard X-ray flares. Sol. Phys., 258, 141–166, 2009. [CrossRef] [Google Scholar]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech.-Trans. ASME, 18 (3), 293–297, 1951. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.