Open Access
Issue |
J. Space Weather Space Clim.
Volume 6, 2016
Brightness Variations of the Sun and Sun-like Stars and Resulting Influences on their Environments
|
|
---|---|---|
Article Number | A33 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/swsc/2016028 | |
Published online | 05 September 2016 |
- Andrews, M.B., J.R. Knight, and L.J. Gray. A simulated lagged response of the North Atlantic Oscillation to the solar cycle over the period 1960–2009. Environ. Res. Lett., 10, 054022, 2015, DOI: 10.1088/1748-9326/10/5/054022. [CrossRef] [Google Scholar]
- Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, and J.W. Harder. Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model. Astron. Astrophys., 530, A71, 2011, DOI: 10.1051/0004-6361/201016189. [Google Scholar]
- Ball, W.T., N.A. Krivova, Y.C. Unruh, J.D. Haigh, and S. Solanki. A new SATIRE-S spectral solar irradiance reconstruction for solar cycles 21–23 and its implications for stratospheric ozone. J. Atmos. Sci., 71, 4086–4101, 2014, DOI: 10.1175/JAS-D-13-0241.1. [NASA ADS] [CrossRef] [Google Scholar]
- Barnhart, B.L., and W.E. Eichinger. Analysis of sunspot variability using the Hilbert-Huang transform. Sol. Phys., 269, 439–449, 2011, DOI: 10.1007/s11207-010-9701-6. [CrossRef] [Google Scholar]
- Cook, J.W., G.E. Brueckner, and M.E. Vanhoosier. Variability of the solar flux in the ultraviolet 1175–2100 Å. J. Geophys. Res., 85, 2257–2268, 1980, DOI: 10.1029/JA085iA05p02257. [NASA ADS] [CrossRef] [Google Scholar]
- Deland, M.T., and R.P. Cebula. Solar UV variations during the decline of Cycle 23. J. Atmos. Sol. Terr. Phys., 77, 225–234, 2012, DOI: 10.1016j.jastp.2012.01.007. [NASA ADS] [CrossRef] [Google Scholar]
- Dikty, S., M. Weber, C. von Savigny, T. Sonkaew, A. Rozanov, and J.P. Burrows. Modulations of the 27 day solar rotation signal in stratospheric ozone from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (2003–2008). J. Geophys. Res., 115, 2010, DOI: 10.1029/2009JD012379. [CrossRef] [Google Scholar]
- Domingo, V., I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, et al. Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev., 145, 337–380, 2009, DOI: 10.1007/s11214-009-9562-1. [Google Scholar]
- Dudok de Wit, T., M. Kretzschmar, J. Lilensten, and T. Woods. Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett., 36, L10107, 2009, DOI: 10.1029/2009GL037825. [CrossRef] [Google Scholar]
- Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modeling. Atmos. Chem. Phys., 13, 3945–3977, 2013, DOI: 10.5194/acp-13-3945-2013. [Google Scholar]
- Fioletov, V.E. Estimating the 27-day and 11-year solar cycle variations in tropical upper stratospheric ozone. J. Geophys. Res., 114, D02302, 2009, DOI: 10.1029/2008JD010499. [CrossRef] [Google Scholar]
- Floyd, L.E., J.W. Cook, L.C. Herring, and P.C. Crane. SUSIM’S 11-year observational record of the solar UV irradiance. Adv. Space Res., 31, 2111–2120, 2003, DOI: 10.1016/S0273-1177(03)00148-0. [Google Scholar]
- Fontenla, J.M., J. Harder, W. Livingston, M. Snow, and T. Woods. High resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res., 116, D20108, 2011, DOI: 10.1029/2011JD016032. [Google Scholar]
- Fröhlich, C., and J. Lean Solar radiative output and its variability: evidence and mechanisms. Astron. Astrophys. Rev., 12, 273–320, 2004, DOI: 10.1007/s00159-004-0024-1. [CrossRef] [Google Scholar]
- Gray, L.J., J. Beer, M. Geller, J.D. Haigh, and M. Lockwood. Solar influences on climate. Rev. Geophys., 48, RG4001, 2010, DOI: 10.1029/2009RG000282. [NASA ADS] [CrossRef] [Google Scholar]
- Haigh, J.D. The Sun and the Earth’s Climate. Living Rev. Sol. Phys., 4, 2, 2007, DOI: 10.12942/lrsp-2007-2. [Google Scholar]
- Haigh, J.D., A.R. Winning, R. Toumi, and J.W. Harder. An influence of solar spectral variations on radiative forcing of climate. Nature, 467, 696–699, 2010, DOI: 10.1038/nature09426. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Harder, J., G. Lawrence, J. Fontenla, G. Rottman, and T. Woods. The spectral irradiance monitor: scientific requirements, instrument design, and operation modes. Sol. Phys., 230, 141–167, 2005, DOI: 10.1007/s11207-005-5007-5. [NASA ADS] [CrossRef] [Google Scholar]
- Harder, J.W., J.M. Fontenla, P. Pilewskie, E.C. Richard, and T.N. Woods. Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett., 36, L07801, 2009, DOI: 10.1029/2008GL036797. [Google Scholar]
- Huang, N.E., Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, and H.H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc., Ser. A, 454, 903–995, 1998. [CrossRef] [Google Scholar]
- Ineson, S., A.C. Maycock, L.J. Gray, A.A. Scaife, N. Dunstone, et al. Regional climate impacts of a possible future grand solar minimum. Nat. Commun., 6, 7535, 2015, DOI: 10.1038/ncomms8535. [Google Scholar]
- Kodera, K. Solar cycle modulation of the North Atlantic Oscillation: implications in the spatial structure of the NAO. Geophys. Res. Lett., 29 (8), 1218, 2002, DOI: 10.1029/2001GL014557. [CrossRef] [Google Scholar]
- Kopp, G., and G. Lawrence. The Total Irradiance Monitor (TIM): instrument design. Sol. Phys., 230, 91–109, 2005, DOI: 10.1007/s11207-005-7446-4. [Google Scholar]
- Kopp, G., and J.L. Lean. A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett., 38, L01706, 2011, DOI: 10.1029/2010GL045777. [Google Scholar]
- Kopp, G., K. Heuerman, D. Harber, and V. Drake. The TSI radiometer facility – absolute calibrations for total solar irradiance instruments. Proc. SPIE, 6677, 667709, 2007, DOI: 10.1117/12.734553. [CrossRef] [Google Scholar]
- Kopp, G., A. Fehlmann, W. Finsterle, D. Harber, and K. Heuerman. Total solar irradiance data record accuracy and consistency improvements. Metrologia, 49, S29–S33, 2012, DOI: MET/407161/SPE/275237. [NASA ADS] [CrossRef] [Google Scholar]
- Kren, A.C., D.R. Marsh, A.K. Smith, and P. Pilewskie. Examining the stratospheric response to the solar cycle in a coupled WACCM simulation with an internally generated QBO. Atmos. Chem. Phys., 14, 4843–4856, 2014. [CrossRef] [Google Scholar]
- Krivova, N.A., and S.K. Solanki. Models of solar irradiance variations: current status. J. Astrophys. Astron., 29, 151–158, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Krivova, N.A., S.K. Solanki, and L. Floyd. Reconstruction of solar UV irradiance in cycle 23. Astron. Astrophys., 452, 631–639, 2006, DOI: 10.1051/0004-6361:20064809. [CrossRef] [EDP Sciences] [Google Scholar]
- Krivova, N.A., S.K. Solanki, and Y.C. Unruh. Towards a long-term record of solar total and spectral irradiance. J. Atmos. Sol. Terr. Phys., 73, 223–234, 2011, DOI: 10.1016/j.jastp.2009.11.013. [Google Scholar]
- Kurucz, R.L. Finding the missing solar ultraviolet opacity. Rev. Mex. Astron. Astrofis., 23, 181, 1992. [Google Scholar]
- Lagg, A., S.K. Solanki, T.L. Riethmüller, V. Martínez Pillet, M. Schüssler, et al. Fully resolved quiet-sun magnetic flux tube observed with the SUNRISE/IMAX instrument. Astrophys. J. Lett., 723, L164, 2010. [Google Scholar]
- Lawrence, G.M., G. Rottman, J. Harder, and T. Woods. Solar Total Irradiance Monitor: TIM. Metrologia, 37, 407–410, 2000. [CrossRef] [Google Scholar]
- Lean, J. Variations in the sun’s radiative output. Rev. Geophys., 29, 505–535, 1991, DOI: 10.1029/91RG01895. [NASA ADS] [CrossRef] [Google Scholar]
- Lean, J. The Sun’s variable radiation and its relevance for Earth. Annu. Rev. Astron. Astrophys., 35, 33–67, 1997, DOI: 10.1146/annurev.astro.35.1.33. [Google Scholar]
- Lean, J., and M.T. DeLand. How does the Sun’s spectrum vary? J. Climate, 25, 2555–2560, 2012, DOI: 10.1175/JCLI-D-11-00571.1. [NASA ADS] [CrossRef] [Google Scholar]
- Lean, J., G. Rottman, J. Harder, and G. Kopp. SORCE contributions to new understanding of global change and solar variability. Sol. Phys., 230, 27–53, 2005, DOI: 10.1007/s11207-005-1527-2. [NASA ADS] [CrossRef] [Google Scholar]
- Lee, J.N., and S. Hameed. The Northern Hemisphere annular mode in summer: its physical significance and its relation to solar activity variations. J. Geophys. Res., 112, D15111, 2007, DOI: 10.1029/2007JD008394. [CrossRef] [Google Scholar]
- Lee, J.N., S. Hameed, and D.T. Shindell. Northern annular mode in summer and its relation to solar activity variations in the GISS Model E. J. Atmos. Sol. Terr. Phys., 70, 730–741, 2008, DOI: 10.1016/j.jastp.2007.10.012. [CrossRef] [Google Scholar]
- Lee, J.N., R.F. Cahalan, and D.L. Wu. The 27-Day rotational variations in total solar irradiance observations: from SORCE/TIM, ACRIM III, and SOHO/VIRGO. J. Atmos. Sol. Terr. Phys., 132, 64–73, 2015, DOI: 10.1016/j.jastp.2015.07.001. [Google Scholar]
- Li, K.-F., and K.-K. Tung. Quasi-Biennial oscillation and solar cycle influences on winter arctic total ozone. J. Geophys. Res., 119, 5823–5835, 2014, DOI: 10.1002/2013JD021065. [Google Scholar]
- Liang, H., Q.-H. Lin, and J.D.Z. Chen. Application of the empirical mode decomposition to the analysis of esophageal manometric data in gastroesophageal reflux disease. IEEE Trans. Biomed. Eng., 52, 10, 2005. [CrossRef] [Google Scholar]
- Lockwood, M., C. Bell, T. Woollings, R.G. Harrison, L.J. Gray, and J.D. Haigh. Top-down solar modulation of climate: evidence for centennial-scale change. Environ. Res. Lett., 5, 034008, 2010, DOI: 10.1088/1748-9326/5. [NASA ADS] [CrossRef] [Google Scholar]
- Marchenko, S., and M.T. DeLand. Solar spectral irradiance changes during cycle 24. Astrophys. J., 789, 117, 2014, DOI: 10.1088/0004-637X/789/2/117. [CrossRef] [Google Scholar]
- Merkel, A.W., J.W. Harder, D.R. Marsh, A.K. Smith, J.M. Fontenla, and T.N. Woods. The impact of solar spectral irradiance variability on middle atmospheric ozone. Geophys. Res. Lett., 38, L13802, 2011, DOI: 10.1029/2011GL047561. [Google Scholar]
- McClintock, W.E., G. Rottman, and T.N. Woods. Solar-stellar irradiance comparison experiment II (SOLSTICE II): instrument concept and design. Sol. Phys., 230, 225, 2005a, DOI: 10.1007/0-387-37625-9_12. [NASA ADS] [CrossRef] [Google Scholar]
- McClintock, W.E., M. Snow, and T.N. Woods. Solar-stellar irradiance comparison experiment II (SOLSTICE II): pre-launch and on-orbit calibrations. Sol. Phys., 230, 259, 2005b, DOI: 10.1007/s11207-005-1585-5. [NASA ADS] [CrossRef] [Google Scholar]
- Preminger, D.G., and S.R. Walton. A new model of total solar irradiance based on sunspot areas. Geophys. Res. Lett., 32, L14109, 2005, DOI: 10.1029/2005GL022839. [NASA ADS] [CrossRef] [Google Scholar]
- Rempel, M., and R. Schlichenmaier. Sunspot modeling: from simplified models to radiative MHD simulations. Living Rev. Sol. Phys., 8, 3, 2011, DOI: 10.12942/lrsp-2011-3. [CrossRef] [Google Scholar]
- Rottman, G. Solar ultraviolet irradiance and its temporal variations. J. Atmos. Sol. Terr. Phys., 61, 37–44, 1999, DOI: 10.1016/S1364-6826(98)00014-X. [Google Scholar]
- Rottman, G. Measurements of total and spectral solar irradiance. Space Sci. Rev., 125, 39, 2006, DOI: 10.1007/s11214-006-9045-6. [NASA ADS] [CrossRef] [Google Scholar]
- Rottman, G., T.W. Woods, M. Snow, and G. DeToma. The solar cycle variation in ultraviolet irradiance. Adv. Space Res., 27, 1927–1932, 2001, DOI: 10.1016/S0273-1177(01)00272-1. [Google Scholar]
- Rottman, G., L. Floyd, and R. Viereck. Measurement of the solar ultraviolet irradiance in solar variability and its effect on climate. Geophysical Monograph, 141, 111–125, 2004. [Google Scholar]
- Rottman, G., T.W. Woods, and V. George. Solar radiation and climate experiment. Sol. Phys., 230, 185, 2005. [Google Scholar]
- Ruzmaikin, A., M.L. Santee, M.J. Schwartz, L. Froidevaux, and H.M. Pickett. The 27-day variations in stratospheric ozone and temperature: new MLS data. Geophys. Res. Lett., 34, L02819, 2007, DOI: 10.1029/2006GL028419. [CrossRef] [Google Scholar]
- Shapiro, A.I., S.K. Solanki, N.A. Krivova, R.V. Tagirov, and W.K. Schmutz. The role of the Fraunhofer lines in solar brightness variability. Astron. Astrophys., 581, A116, 2015. [CrossRef] [EDP Sciences] [Google Scholar]
- Shindell, D.T., G.A. Schmidt, R.L. Miller, and D. Rind. Northern Hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing. J. Geophys. Res., 106, 7193–7210, 2001, DOI: 10.1029/2000JD900547. [CrossRef] [Google Scholar]
- Snow, M., W.E. McClintock, G. Rottman, and T.N. Woods. Solar-stellar irradiance comparison experiment II (SOLSTICE II): examination of the solar stellar comparison technique. Sol. Phys., 230, 295, 2005. [NASA ADS] [CrossRef] [Google Scholar]
- Solanki, S.K. Sunspots: an overview. Astron. Astrophys. Rev., 11, 153–286, 2003. [Google Scholar]
- Solanki, S.K., N.A. Krivova, and T. Wenzler. Irradiance models. Adv. Space Res., 35, 376–383, 2005. [Google Scholar]
- Spruit, H.C. The solar engine and its influence on terrestrial atmosphere and climate. NATO ASI Series I, vol. 25, Kluwer, Dordrecht, 107, 1994. [Google Scholar]
- Stephens, G.L., J.L. Li, M. Wild, C.A. Clayson, N. Loeb, S. Kato, T. L’Ecuyer, P.W. Stackhouse, and T. Andrews. The energy balance of the earth’s climate system. Nat. Geosci., 5, 691–696, 2012, DOI: 10.1038/ngeo1580. [Google Scholar]
- Swartz, W.H., R.S. Stolarski, L.D. Oman, E.L. Fleming, and C.H. Jackman. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model. Atmos. Chem. Phys., 12, 5937–5948, 2012, DOI: 10.5194/acp-12-5937-2012. [CrossRef] [Google Scholar]
- Topka, K.P., T.D. Tarbell, and A.M. Title. Properties of the smallest solar magnetic elements. II. Observations versus hot wall models of faculae. Astrophys. J., 484, 479, 1997. [CrossRef] [Google Scholar]
- Unruh, Y.C., S.K. Solanki, and M. Fligge. The spectral dependence of facular contrast and solar irradiance variations. Astron. Astrophys., 345, 635–642, 1999. [Google Scholar]
- Unruh, Y.C., N. Krivova, S. Solanki, J. Harder, and G. Kopp. Spectral irradiance variations: comparisons between observations and the SATIRE model on solar rotation time scales. Astron. Astrophys., 486, 311, 2008, DOI: 10.1051/0004-6361:20078421. [Google Scholar]
- Viereck, R., L. Puga, D. McMullin, D. Judge, M. Weber, and W.K. Tobiska. A proxy for solar EUV. Geophys. Res. Lett., 28, 1343–1346, 2001. [NASA ADS] [CrossRef] [Google Scholar]
- Wehrli, C., W. Schmutz, and A.I. Shapiro. Correlation of spectral solar irradiance with solar activity as measured by VIRGO. Astron. Astrophys., 556, L3, 2013, DOI: 10.1051/0004-6361/201220864. [Google Scholar]
- Wen, G., R.F. Cahalan, J.D. Haigh, P. Pilewskie, L. Oreopoulos, and J.W. Harder. Reconciliation of modeled climate responses to spectral solar forcing. J. Geophys. Res. [Atmos.], 118, 6281–6289, 2013, DOI: 10.1002/jgrd.50506. [Google Scholar]
- Wild, M., D. Folini, C. Schär, N. Loeb, E. Dutton, and G. König-Langlo. The global energy balance from a surface perspective. Clim. Dyn., 323, 2012, 3107, DOI: 10.1007/s00382-012-1569-8. [Google Scholar]
- Woods, T.N., F.G. Eparvier, S.M. Bailey, P.C. Chamberlin, J. Lean, G.J. Rottman, S.C. Solomon, W.K. Tobiska, and D.L. Woodraska. Solar EUV experiment (SEE): mission overview and first results. J. Geophys. Res., 110, A01312, 2005, DOI: 10.1029/2004JA010765. [NASA ADS] [CrossRef] [Google Scholar]
- Woods, T.N., M. Snow, J. Harder, G. Chapman, and A. Cookson. A different view of solar spectral irradiance variations: modeling total energy of six-month intervals. Sol. Phys., 290, 2649–2676, 2015, DOI: 10.1007/s11207-015-0766-0. [NASA ADS] [CrossRef] [Google Scholar]
- Wu, Z., and N.E. Huang. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc., Ser. A, 460, 1597–1611, 2004. [Google Scholar]
- Yeo, K.L., N.A. Krivova, S.K. Solanki, and K.H. Glassmeier. Reconstruction of total and spectral solar irradiance since 1974 based on KPVT, SoHO/MDI and SDO/HMI observations. Astron. Astrophys., 570, A85, 2014, DOI: 10.1051/0004-6361/201423628. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.