Open Access
J. Space Weather Space Clim.
Volume 7, 2017
Article Number A2
Number of page(s) 13
Published online 12 January 2017
  • Bein, B.M., S. Berkebile-Stoiser, A.M. Veronig, M. Temmer, and B. Vršnak. Impulsive acceleration of coronal mass ejections. II. Relation to soft X-ray flares and filament eruptions. Astrophys. J., 755, 44, 2012, DOI: 10.1088/0004-637X/755/1/44. [CrossRef]
  • Cargill, P.J. On the aerodynamic drag force acting on interplanetary coronal mass ejections. Sol. Phys., 221, 135–149, 2004, DOI: 10.1023/B:SOLA.0000033366.10725.a2. [NASA ADS] [CrossRef]
  • Caroubalos, C. Contribution à l’étude de l’activité solaire en relation avec ses effects géophysiques. Ann. Astrophys., 27, 333, 1964.
  • Chen, J., and V. Kunkel. Temporal and physical connection between coronal mass ejections and flares. Astrophys. J., 717, 1105–1122, 2010, DOI: 10.1088/0004-637X/717/2/1105. [CrossRef]
  • Cliver, E.W., J. Feynman, and H.B. Garrett. An estimate of the maximum speed of the solar wind, 1938–1989. J. Geophys. Res., 95, 17103–17112, 1990, DOI: 10.1029/JA095iA10p17103. [CrossRef]
  • Colaninno, R.C., A. Vourlidas, and C.C. Wu. Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. J. Geophys. Res. [Space Phys], 118, 6866–6879, 2013, DOI: 10.1002/2013JA019205. [CrossRef]
  • Démoulin, P. Interaction of ICMEs with the solar wind. In: M., Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet, and F. Pantellini, Editors. Twelfth International Solar Wind Conference Vol. 1216 of AIP Conf. Proc., 329–334, 2010, DOI: 10.1063/1.3395866.
  • Elliott, H.A., D.J. McComas, N.A. Schwadron, J.T. Gosling, R.M. Skoug, G. Gloeckler, and T.H. Zurbuchen. An improved expected temperature formula for identifying interplanetary coronal mass ejections. J. Geophys. Res., 110, A04103, 2005, DOI: 10.1029/2004JA010794. [NASA ADS] [CrossRef]
  • Forbes, T.G., J.A. Linker, J. Chen, C. Cid, J. Kóta, et al. CME theory and models. Space Sci. Rev., 123, 251–302, 2006, DOI: 10.1007/s11214-006-9019-8. [NASA ADS] [CrossRef]
  • Gopalswamy, N. Coronal mass ejections and space weather. In: T., Tsuda, R. Fujii, K. Shibata, and M.A. Geller, Editors. Climate and Weather of the Sun-Earth System (CAWSES) Selected Papers from the 2007 Kyoto Symposium, TERRAPUB, Tokyo, 77–120, 2009.
  • Gopalswamy, N., A. Lara, R.P. Lepping, M.L. Kaiser, D. Berdichevsky, and O.C. St. Cyr. Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett., 27, 145–148, 2000, DOI: 10.1029/1999GL003639. [NASA ADS] [CrossRef]
  • Gopalswamy, N., A. Lara, S. Yashiro, M.L. Kaiser, and R.A. Howard. Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. [Space Phys], 106, 29207–29218, 2001, DOI: 10.1029/2001JA000177. [NASA ADS] [CrossRef]
  • Gopalswamy, N., P. Mäkelä, S. Akiyama, S. Yashiro, H. Xie, N. Thakur, and S.W. Kahler. Large solar energetic particle events associated with filament eruptions outside of active regions. Astrophys. J., 806, 8, 2015, DOI: 10.1088/0004-637X/806/1/8. [CrossRef]
  • Gopalswamy, N., P. Mäkelä, H. Xie, and S. Yashiro. Testing the empirical shock arrival model using quadrature observations. Space Weather, 11, 661–669, 2013, DOI: 10.1002/2013SW000945. [CrossRef]
  • Gosling, J.T., V. Pizzo, and S.J. Bame. Anomalously low proton temperatures in the solar wind following interplanetary shock waves – evidence for magnetic bottles? J. Geophys. Res. [Space Phys], 78, 2001, 1973, DOI: 10.1029/JA078i013p02001. [CrossRef]
  • Jian, L., C.T. Russell, J.G. Luhmann, and R.M. Skoug. Properties of interplanetary coronal mass ejections at one AU during 1995–2004. Sol. Phys., 239, 393–436, 2006, DOI: 10.1007/s11207-006-0133-2. [NASA ADS] [CrossRef]
  • Maričić, D., B. Vršnak, A.L. Stanger, A.M. Veronig, M. Temmer, and D. Roša. Acceleration phase of coronal mass ejections: II. Synchronization of the energy release in the associated flare. Sol. Phys., 241, 99–112, 2007, DOI: 10.1007/s11207-007-0291-x. [NASA ADS] [CrossRef]
  • Mays, M.L., A. Taktakishvili, A. Pulkkinen, P.J. MacNeice, L. Rastätter, et al. Ensemble modeling of CMEs using the WSA-ENLIL+Cone model. Sol. Phys., 290, 1775–1814, 2015, DOI: 10.1007/s11207-015-0692-1. [CrossRef]
  • Millward, G., D. Biesecker, V. Pizzo, and C.A. Koning. An operational software tool for the analysis of coronagraph images: Determining CME parameters for input into the WSA-Enlil heliospheric model. Space Weather, 11, 57–68, 2013, DOI: 10.1002/swe.20024. [CrossRef]
  • Möstl, C., K. Amla, J.R. Hall, P.C. Liewer, E.M. De Jong, et al. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU. Astrophys. J., 787, 119, 2014, DOI: 10.1088/0004-637X/787/2/119. [CrossRef]
  • Nakajima, H., H. Sekiguchi, M. Sawa, K. Kai, and S. Kawashima. The radiometer and polarimeters at 80, 35, and 17 GHz for solar observations at Nobeyama. Publ. Astron. Soc. Jpn., 37, 163–170, 1985.
  • Núñez, M., T. Nieves-Chinchilla, and A. Pulkkinen. Prediction of shock arrival times from CME and flare data. Space Weather, 2016, in press.
  • Odstrcil, D., V.J. Pizzo, J.A. Linker, P. Riley, R. Lionello, and Z. Mikic. Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes. J. Atmos. Sol. Terr. Phys., 66, 1311–1320, 2004, DOI: 10.1016/j.jastp.2004.04.007. [CrossRef]
  • Owens, M., and P. Cargill. Predictions of the arrival time of coronal mass ejections at 1AU: an analysis of the causes of errors. Ann. Geophys., 22, 661–671, 2004, DOI: 10.5194/angeo-22-661-2004. [CrossRef]
  • Reeves, K.K., and S.J. Moats. Relating coronal mass ejection kinematics and thermal energy release to flare emissions using a model of solar eruptions. Astrophys. J., 712, 429–434, 2010, DOI: 10.1088/0004-637X/712/1/429. [CrossRef]
  • Rouillard, A.P. Relating white light and in situ observations of coronal mass ejections: a review. J. Atmos. Sol. Terr. Phys., 73, 1201–1213, 2011, DOI: 10.1016/j.jastp.2010.08.015. [NASA ADS] [CrossRef]
  • Salas-Matamoros, C., and K.-L. Klein. On the statistical relationship between CME speed and soft X-ray flux and fluence of the associated flare. Sol. Phys., 290, 1337–1353, 2015, DOI: 10.1007/s11207-015-0677-0. [CrossRef]
  • Schwenn, R., A. Dal Lago, E. Huttunen, and W.D. Gonzalez. The association of coronal mass ejections with their effects near the Earth. Ann. Geophys., 23, 1033–1059, 2005, DOI: 10.5194/angeo-23-1033-2005. [NASA ADS] [CrossRef]
  • Shi, T., Y. Wang, L. Wan, X. Cheng, M. Ding, and J. Zhang. Predicting the arrival time of coronal mass ejections with the graduated cylindrical shell and drag force model. Astrophys. J., 806, 271, 2015, DOI: 10.1088/0004-637X/806/2/271. [CrossRef]
  • Temmer, M., A.M. Veronig, V. Peinhart, and B. Vršnak. Asymmetry in the CME-CME interaction process for the events from 2011 February 14–15. Astrophys. J., 785, 85, 2014, DOI: 10.1088/0004-637X/785/2/85. [NASA ADS] [CrossRef]
  • Thernisien, A., A. Vourlidas, and R.A. Howard. Forward modeling of coronal mass ejections using STEREO/SECCHI data. Sol. Phys., 256, 111–130, 2009, DOI: 10.1007/s11207-009-9346-5. [NASA ADS] [CrossRef]
  • Tobiska, W.K., D. Knipp, W.J. Burke, D. Bouwer, J. Bailey, D. Odstrcil, M.P. Hagan, J. Gannon, and B.R. Bowman. The Anemomilos prediction methodology for Dst. Space Weather, 11, 490–508, 2013, DOI: 10.1002/swe.20094. [CrossRef]
  • Trottet, G., S. Samwel, K.-L. Klein, T. Dudok deWit, and R. Miteva. Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Sol. Phys., 290, 819–839, 2015, DOI: 10.1007/s11207-014-0628-1. [CrossRef]
  • Vršnak, B., D. Ruždjak, D. Sudar, and N. Gopalswamy. Kinematics of coronal mass ejections between 2 and 30 solar radii. What can be learned about forces governing the eruption? A&A, 423, 717–728, 2004, DOI: 10.1051/0004-6361:20047169. [NASA ADS] [CrossRef] [EDP Sciences]
  • Vršnak, B., M. Temmer, T. Žic, A. Taktakishvili, M. Dumbović, C. Möstl, A.M. Veronig, M.L. Mays, and D. Odstrčil. Heliospheric propagation of coronal mass ejections: comparison of numerical WSA ENLIL cone model and analytical drag-based model. Astrophys. J. Suppl., 213, 21, 2014, DOI: 10.1088/0067-0049/213/2/21. [CrossRef]
  • Vršnak, B., and T. Žic. Transit times of interplanetary coronal mass ejections and the solar wind speed. A&A, 472, 937–943, 2007, DOI: 10.1051/0004-6361:20077499. [NASA ADS] [CrossRef] [EDP Sciences]
  • Vršnak, B., T. Žic, D. Vrbanec, M. Temmer, T. Rollett, et al. Propagation of interplanetary coronal mass ejections: the drag-based model. Sol. Phys., 285, 295–315, 2013, DOI: 10.1007/s11207-012-0035-4. [NASA ADS] [CrossRef]
  • Wu, C.-C., M. Dryer, S.T. Wu, B.E. Wood, C.D. Fry, K. Liou, and S. Plunkett. Global three-dimensional simulation of the interplanetary evolution of the observed geoeffective coronal mass ejection during the epoch 1–4 August 2010. J. Geophys. Res. [Space Phys], 116, A12103, 2011, DOI: 10.1029/2011JA016947.
  • Zhang, J., I.G. Richardson, D.F. Webb, N. Gopalswamy, and E. Huttunen. Solar and interplanetary sources of major geomagnetic storms (Dst = −100 nT) during 1996–2005. J. Geophys. Res., 112, 10102, 2007, DOI: 10.1029/2007JA012321.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.