Open Access
Research Article
J. Space Weather Space Clim.
Volume 7, 2017
Article Number A2
Number of page(s) 13
Published online 12 January 2017
  • Bein, B.M., S. Berkebile-Stoiser, A.M. Veronig, M. Temmer, and B. Vršnak. Impulsive acceleration of coronal mass ejections. II. Relation to soft X-ray flares and filament eruptions. Astrophys. J., 755, 44, 2012, DOI: 10.1088/0004-637X/755/1/44. [Google Scholar]
  • Cargill, P.J. On the aerodynamic drag force acting on interplanetary coronal mass ejections. Sol. Phys., 221, 135–149, 2004, DOI: 10.1023/B:SOLA.0000033366.10725.a2. [NASA ADS] [CrossRef] [Google Scholar]
  • Caroubalos, C. Contribution à l’étude de l’activité solaire en relation avec ses effects géophysiques. Ann. Astrophys., 27, 333, 1964. [Google Scholar]
  • Chen, J., and V. Kunkel. Temporal and physical connection between coronal mass ejections and flares. Astrophys. J., 717, 1105–1122, 2010, DOI: 10.1088/0004-637X/717/2/1105. [CrossRef] [Google Scholar]
  • Cliver, E.W., J. Feynman, and H.B. Garrett. An estimate of the maximum speed of the solar wind, 1938–1989. J. Geophys. Res., 95, 17103–17112, 1990, DOI: 10.1029/JA095iA10p17103. [CrossRef] [Google Scholar]
  • Colaninno, R.C., A. Vourlidas, and C.C. Wu. Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. J. Geophys. Res. [Space Phys], 118, 6866–6879, 2013, DOI: 10.1002/2013JA019205. [Google Scholar]
  • Démoulin, P. Interaction of ICMEs with the solar wind. In: M., Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet, and F. Pantellini, Editors. Twelfth International Solar Wind Conference Vol. 1216 of AIP Conf. Proc., 329–334, 2010, DOI: 10.1063/1.3395866. [Google Scholar]
  • Elliott, H.A., D.J. McComas, N.A. Schwadron, J.T. Gosling, R.M. Skoug, G. Gloeckler, and T.H. Zurbuchen. An improved expected temperature formula for identifying interplanetary coronal mass ejections. J. Geophys. Res., 110, A04103, 2005, DOI: 10.1029/2004JA010794. [NASA ADS] [CrossRef] [Google Scholar]
  • Forbes, T.G., J.A. Linker, J. Chen, C. Cid, J. Kóta, et al. CME theory and models. Space Sci. Rev., 123, 251–302, 2006, DOI: 10.1007/s11214-006-9019-8. [NASA ADS] [CrossRef] [Google Scholar]
  • Gopalswamy, N. Coronal mass ejections and space weather. In: T., Tsuda, R. Fujii, K. Shibata, and M.A. Geller, Editors. Climate and Weather of the Sun-Earth System (CAWSES) Selected Papers from the 2007 Kyoto Symposium, TERRAPUB, Tokyo, 77–120, 2009. [Google Scholar]
  • Gopalswamy, N., A. Lara, R.P. Lepping, M.L. Kaiser, D. Berdichevsky, and O.C. St. Cyr. Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett., 27, 145–148, 2000, DOI: 10.1029/1999GL003639. [NASA ADS] [CrossRef] [Google Scholar]
  • Gopalswamy, N., A. Lara, S. Yashiro, M.L. Kaiser, and R.A. Howard. Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. [Space Phys], 106, 29207–29218, 2001, DOI: 10.1029/2001JA000177. [CrossRef] [Google Scholar]
  • Gopalswamy, N., P. Mäkelä, S. Akiyama, S. Yashiro, H. Xie, N. Thakur, and S.W. Kahler. Large solar energetic particle events associated with filament eruptions outside of active regions. Astrophys. J., 806, 8, 2015, DOI: 10.1088/0004-637X/806/1/8. [NASA ADS] [CrossRef] [Google Scholar]
  • Gopalswamy, N., P. Mäkelä, H. Xie, and S. Yashiro. Testing the empirical shock arrival model using quadrature observations. Space Weather, 11, 661–669, 2013, DOI: 10.1002/2013SW000945. [NASA ADS] [CrossRef] [Google Scholar]
  • Gosling, J.T., V. Pizzo, and S.J. Bame. Anomalously low proton temperatures in the solar wind following interplanetary shock waves – evidence for magnetic bottles? J. Geophys. Res. [Space Phys], 78, 2001, 1973, DOI: 10.1029/JA078i013p02001. [CrossRef] [Google Scholar]
  • Jian, L., C.T. Russell, J.G. Luhmann, and R.M. Skoug. Properties of interplanetary coronal mass ejections at one AU during 1995–2004. Sol. Phys., 239, 393–436, 2006, DOI: 10.1007/s11207-006-0133-2. [NASA ADS] [CrossRef] [Google Scholar]
  • Maričić, D., B. Vršnak, A.L. Stanger, A.M. Veronig, M. Temmer, and D. Roša. Acceleration phase of coronal mass ejections: II. Synchronization of the energy release in the associated flare. Sol. Phys., 241, 99–112, 2007, DOI: 10.1007/s11207-007-0291-x. [Google Scholar]
  • Mays, M.L., A. Taktakishvili, A. Pulkkinen, P.J. MacNeice, L. Rastätter, et al. Ensemble modeling of CMEs using the WSA-ENLIL+Cone model. Sol. Phys., 290, 1775–1814, 2015, DOI: 10.1007/s11207-015-0692-1. [CrossRef] [Google Scholar]
  • Millward, G., D. Biesecker, V. Pizzo, and C.A. Koning. An operational software tool for the analysis of coronagraph images: Determining CME parameters for input into the WSA-Enlil heliospheric model. Space Weather, 11, 57–68, 2013, DOI: 10.1002/swe.20024. [CrossRef] [Google Scholar]
  • Möstl, C., K. Amla, J.R. Hall, P.C. Liewer, E.M. De Jong, et al. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU. Astrophys. J., 787, 119, 2014, DOI: 10.1088/0004-637X/787/2/119. [CrossRef] [Google Scholar]
  • Nakajima, H., H. Sekiguchi, M. Sawa, K. Kai, and S. Kawashima. The radiometer and polarimeters at 80, 35, and 17 GHz for solar observations at Nobeyama. Publ. Astron. Soc. Jpn., 37, 163–170, 1985. [Google Scholar]
  • Núñez, M., T. Nieves-Chinchilla, and A. Pulkkinen. Prediction of shock arrival times from CME and flare data. Space Weather, 2016, in press. [Google Scholar]
  • Odstrcil, D., V.J. Pizzo, J.A. Linker, P. Riley, R. Lionello, and Z. Mikic. Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes. J. Atmos. Sol. Terr. Phys., 66, 1311–1320, 2004, DOI: 10.1016/j.jastp.2004.04.007. [Google Scholar]
  • Owens, M., and P. Cargill. Predictions of the arrival time of coronal mass ejections at 1AU: an analysis of the causes of errors. Ann. Geophys., 22, 661–671, 2004, DOI: 10.5194/angeo-22-661-2004. [CrossRef] [Google Scholar]
  • Reeves, K.K., and S.J. Moats. Relating coronal mass ejection kinematics and thermal energy release to flare emissions using a model of solar eruptions. Astrophys. J., 712, 429–434, 2010, DOI: 10.1088/0004-637X/712/1/429. [CrossRef] [Google Scholar]
  • Rouillard, A.P. Relating white light and in situ observations of coronal mass ejections: a review. J. Atmos. Sol. Terr. Phys., 73, 1201–1213, 2011, DOI: 10.1016/j.jastp.2010.08.015. [Google Scholar]
  • Salas-Matamoros, C., and K.-L. Klein. On the statistical relationship between CME speed and soft X-ray flux and fluence of the associated flare. Sol. Phys., 290, 1337–1353, 2015, DOI: 10.1007/s11207-015-0677-0. [CrossRef] [Google Scholar]
  • Schwenn, R., A. Dal Lago, E. Huttunen, and W.D. Gonzalez. The association of coronal mass ejections with their effects near the Earth. Ann. Geophys., 23, 1033–1059, 2005, DOI: 10.5194/angeo-23-1033-2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Shi, T., Y. Wang, L. Wan, X. Cheng, M. Ding, and J. Zhang. Predicting the arrival time of coronal mass ejections with the graduated cylindrical shell and drag force model. Astrophys. J., 806, 271, 2015, DOI: 10.1088/0004-637X/806/2/271. [CrossRef] [Google Scholar]
  • Temmer, M., A.M. Veronig, V. Peinhart, and B. Vršnak. Asymmetry in the CME-CME interaction process for the events from 2011 February 14–15. Astrophys. J., 785, 85, 2014, DOI: 10.1088/0004-637X/785/2/85. [Google Scholar]
  • Thernisien, A., A. Vourlidas, and R.A. Howard. Forward modeling of coronal mass ejections using STEREO/SECCHI data. Sol. Phys., 256, 111–130, 2009, DOI: 10.1007/s11207-009-9346-5. [Google Scholar]
  • Tobiska, W.K., D. Knipp, W.J. Burke, D. Bouwer, J. Bailey, D. Odstrcil, M.P. Hagan, J. Gannon, and B.R. Bowman. The Anemomilos prediction methodology for Dst. Space Weather, 11, 490–508, 2013, DOI: 10.1002/swe.20094. [CrossRef] [Google Scholar]
  • Trottet, G., S. Samwel, K.-L. Klein, T. Dudok deWit, and R. Miteva. Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Sol. Phys., 290, 819–839, 2015, DOI: 10.1007/s11207-014-0628-1. [CrossRef] [Google Scholar]
  • Vršnak, B., D. Ruždjak, D. Sudar, and N. Gopalswamy. Kinematics of coronal mass ejections between 2 and 30 solar radii. What can be learned about forces governing the eruption? A&A, 423, 717–728, 2004, DOI: 10.1051/0004-6361:20047169. [Google Scholar]
  • Vršnak, B., M. Temmer, T. Žic, A. Taktakishvili, M. Dumbović, C. Möstl, A.M. Veronig, M.L. Mays, and D. Odstrčil. Heliospheric propagation of coronal mass ejections: comparison of numerical WSA ENLIL cone model and analytical drag-based model. Astrophys. J. Suppl., 213, 21, 2014, DOI: 10.1088/0067-0049/213/2/21. [Google Scholar]
  • Vršnak, B., and T. Žic. Transit times of interplanetary coronal mass ejections and the solar wind speed. A&A, 472, 937–943, 2007, DOI: 10.1051/0004-6361:20077499. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Vršnak, B., T. Žic, D. Vrbanec, M. Temmer, T. Rollett, et al. Propagation of interplanetary coronal mass ejections: the drag-based model. Sol. Phys., 285, 295–315, 2013, DOI: 10.1007/s11207-012-0035-4. [Google Scholar]
  • Wu, C.-C., M. Dryer, S.T. Wu, B.E. Wood, C.D. Fry, K. Liou, and S. Plunkett. Global three-dimensional simulation of the interplanetary evolution of the observed geoeffective coronal mass ejection during the epoch 1–4 August 2010. J. Geophys. Res. [Space Phys], 116, A12103, 2011, DOI: 10.1029/2011JA016947. [Google Scholar]
  • Zhang, J., I.G. Richardson, D.F. Webb, N. Gopalswamy, and E. Huttunen. Solar and interplanetary sources of major geomagnetic storms (Dst = −100 nT) during 1996–2005. J. Geophys. Res., 112, 10102, 2007, DOI: 10.1029/2007JA012321. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.