Open Access
Issue
J. Space Weather Space Clim.
Volume 9, 2019
Article Number A18
Number of page(s) 19
DOI https://doi.org/10.1051/swsc/2019015
Published online 27 May 2019
  • Amm O, Viljanen A. 1999. Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems. Earth Planets Space 51: 431–440. DOI: 10.1186/BF03352247. [CrossRef] [Google Scholar]
  • Anderson CW, Lanzerotti LJ, Maclennan CG. 1974. Outage of the L-4 system and the geomagnetic disturbances of August 4, 1972. Bell Syst Techn J 53: 1817. [CrossRef] [Google Scholar]
  • Apatenkov SV, Sergeev VA, Pirjola R, Viljanen A. 2004. Evaluation of the geometry of ionospheric current systems related to rapid geomagnetic variations. Ann Geophys 22: 63–72. [CrossRef] [Google Scholar]
  • Araki T. 1994. A physical model of the geomagnetic sudden commencement. In: Solar wind sources of magnetospheric ultra-low-frequency waves, Engebretson MJ, Takahashi K, Scholer M (Eds.), AGU, Washington, D.C., pp. 183–200. [Google Scholar]
  • Belakhovsky VB, Pilipenko VA, Sakharov YaA, Lorentzen DL, Samsonov SN. 2017. Geomagnetic and ionospheric response to the interplanetary shock on January 24, 2012. Earth Planets Space 69(105): 2017. DOI: 10.1186/s40623-017-0696-1. [CrossRef] [Google Scholar]
  • Belakhovsky VB, Pilipenko VA, Sakharov YaA, Selivanov VN. 2018. Characteristics of the geomagnetic field variability for the study of the magnetic storm and substorm impact on electrical power systems. Fizika Zemli (Solid Earth Phys) N1: 173–185. [Google Scholar]
  • Béland J, Small K. 2004. Space Weather Effects on Power Transmission Systems: The Cases of Hydro-Québec and Transpower New Zealand Ltd. In: Effects of space weather on technology infrastructure. NATO science series II: mathematics, physics and chemistry, Daglis IA (Ed.), vol. 176, Springer, Dordrecht. [Google Scholar]
  • Boteler DH, Pirjola RJ, Nevanlinna H. 1998. The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Adv Space Res 22: 17–27. DOI: 10.1016/S0273-1177(97)01096-X. [CrossRef] [Google Scholar]
  • Carter BA, Yizengaw E, Pradipta R, Halford AJ, Norman R, Zhang K. 2015. Interplanetary shocks and the resulting geomagnetically induced currents at the equator. Geophys Res Lett 42: 6554–6559. DOI: 10.1002/2015GL065060. [CrossRef] [Google Scholar]
  • Engebretson MJ, Yeoman TK, Oksavik K, Søraas F, Sigernes F, et al. 2013. Multi-instrument observations from Svalbard of a traveling convection vortex, electromagnetic ion cyclotron wave burst, and proton precipitation associated with a bow shock instability. J Geophys Res 118: 2975–2997. DOI: 10.1002/jgra.50291. [CrossRef] [Google Scholar]
  • Erinmez IA, Kappenman JG, Radasky WA. 2002. Management of the geomagnetically induced current risks on the national grid company’s electric power transmission system. J Atmos Sol-Terr Phys 64: 743–756. [Google Scholar]
  • Eroshenko EA, Belov AV, Boteler D, Gaidash SP, Lobkov SL, Pirjola R, Trichtchenko L. 2010. Effects of strong geomagnetic storms on Northern railways in Russia. Adv Space Res 46: 1102–1110. DOI: 10.1016/j.asr.2010.05.017. [CrossRef] [Google Scholar]
  • Fiori RAD, Boteler DH, Gillies DM. 2014. Assessment of GIC risk due to geomagnetic sudden commencements and identification of the current systems responsible. Space Weather 12: 76–91. DOI: 10.1002/2013SW000967. [CrossRef] [Google Scholar]
  • Forbes KF, St. Cyr OC. 2004. Space weather and the electricity market: An initial assessment. Space Weather 2: S10003. DOI: 10.1029/2003SW000005. [CrossRef] [Google Scholar]
  • Forbes KF, St. Cyr OC. 2008. Solar activity and economic fundamentals: Evidence from 12 geographically disparate power grids. Space Weather 6(10): s10003. DOI: 10.1029/2007SW000350. [CrossRef] [Google Scholar]
  • Friis-Christensen E, McHenry MA, Clauer CR, Vennerstroem S. 1988. Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind. Geophys Res Lett 15: 253–256. DOI: 10.1029/GL015i003p00253. [CrossRef] [Google Scholar]
  • Girgis R, Vedante K, Gramm K. 2012. Effects of geomagnetically induced currents on power transformers and power systems. CIGRE (Conseil International des Grands Réseaux Électriques) A2-304: 8. [Google Scholar]
  • Ivannikova E, Kruglyakov M, Kuvshinov A, Rastätter L, Pulkkinen A. 2018. Regional 3-D modeling of ground electromagnetic field due to realistic geomagnetic disturbances. Space Weather 16: 476–500. DOI: 10.1002/2017SW001793. [CrossRef] [Google Scholar]
  • Juusola L, Kauristie K, van de Kamp M, Tanskanen EI, Mursula K, et al. 2015. Solar wind control of ionospheric equivalent currents and their time derivatives. J Geophys Res 120: 4971–4992. DOI:10.1002/2015JA021204. [CrossRef] [Google Scholar]
  • Kappenman JG. 2003. Storm sudden commencement events and the associated geomagnetically induced current risks to ground-based systems at low-latitude and midlatitude locations. Space Weather 1: 1016. DOI: 10.1029/2003SW000009. [Google Scholar]
  • Kappenman JG. 2005. An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent sun-earth connection events of 29-31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather 3: S08C01. DOI: 10.1029/2004SW000128 [Google Scholar]
  • Kelly GS, Viljanen A, Beggan CD, Thomson AWP. 2017. Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15: 99–114. DOI: 10.1002/2016SW001469. [CrossRef] [Google Scholar]
  • Kleimenova NG, Kozyreva OV, Kauristie K, Manninen J, Ranta A. 2002. Case studies on the dynamics of Pi3 geomagnetic and riometer pulsations during auroral activations. Ann Geophys 20: 151–159. [CrossRef] [Google Scholar]
  • Knipp DJ. 2015. Synthesis of geomagnetically induced currents: Commentary and research. Space Weather 13: 727–729. DOI: 10.1002/2015SW001317. [CrossRef] [Google Scholar]
  • Lanzerotti LJ. 2001. Space weather effects on technologies. Space Weather Geophys Monogr Ser AGU 125: 11. [Google Scholar]
  • Lanzerotti LJ, Wolfe A, Trivedy N, Maclennan CG, Medford LV. 1990. Magnetic impulse events at high latitudes: magnetopause and boundary layer plasma processes. J Geophys Res 95: 97–107. DOI: 10.1029/JA095iA01p00097. [CrossRef] [Google Scholar]
  • Li H, Wang C, Xu WY, Kan JR. 2012. Characteristics of magnetospheric energetics during geomagnetic storms. J Geophys Res 117: A04225. DOI: 10.1029/2012JA017584. [Google Scholar]
  • Luo B, Li X, Temerin M, Liu S. 2013. Prediction of the AU, AL, and AE indices using solar wind parameters. J Geophys Res 118: 7683–7694. DOI: 10.1002/2013JA019188. [CrossRef] [Google Scholar]
  • Marshall RA, Dalzell M, Waters CL, Goldthorpe P, Smith EA. 2012. Geomagnetically induced currents in the New Zealand power network. Space Weather 10: s08003. DOI: 10.1029/2012SW000806. [Google Scholar]
  • McHenry MA, Clauer CR. 1987. Modeled ground magnetic signatures of flux transfer events. J Geophys Res 92: 11231–11240. DOI:10.1029/JA092iA10p11231. [CrossRef] [Google Scholar]
  • Nagano H, Suzuki A, Kim JS, Sugiura M. 1981. Pi3 magnetic pulsations associated with substorms. Planet Space Sci 29: 529–553. DOI: 10.1016/0032-0633(81)90067-2. [CrossRef] [Google Scholar]
  • Newell PT, Gjerloev JW. 2011. Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. J Geophys Res 116: A12232. DOI: 10.1029/2011JA016936. [Google Scholar]
  • Ngwira CM, Pulkkinen AA, Bernabeu E, Eichner J, Viljanen A, Crowley G. 2015. Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophys Res Lett 42: 6916–6921. DOI: 10.1002/2015GL065061. [CrossRef] [Google Scholar]
  • Pirjola R. 2000. Geomagnetically induced currents during magnetic storms. IEEE Trans Plasma Sci 28: 1867–1873. DOI: 10.1109/27.902215. [CrossRef] [Google Scholar]
  • Pirjola R, Kauristie K, Lappalainen H, Viljanen A, Pulkkinen A. 2005. Space weather risk. Space Weather 3: S02A02. DOI: 10.1029/2004SW000112. [Google Scholar]
  • Pulkkinen A, Pirjola R, Boteler D, Viljanen A, Yegorov I. 2001. Modeling of space weather effects on pipelines. J Appl Geophys 48: 233–256. [CrossRef] [Google Scholar]
  • Pulkkinen A, Amm O, Viljanen A, BEAR Working Group. 2003. Ionospheric equivalent current distributions determined with the method of spherical elementary current systems. J Geophys Res 108: 1053. DOI: 10.1029/2001JA005085. [Google Scholar]
  • Pulkkinen A, Lindahl S, Viljanen A, Pirjola R. 2005. Geomagnetic storm of 29–31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system. Space Weather 3(8): S08C03. DOI: 10.1029/2004SW000123. [Google Scholar]
  • Pulkkinen A, Klimas A, Vassiliadis D, Uritsky V, Tanskanen E. 2006. Spatiotemporal scaling properties of the ground geomagnetic field variations. J Geophys Res 111: A03305. DOI: 10.1029/2005JA011294. [Google Scholar]
  • Pulkkinen A, Bernabeu E, Eichner J, Viljanen A, Ngwira C. 2015. Regional-scale high-latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth, Planets and Space 67: 93. DOI: 10.1186/s40623-015-0255-6. [Google Scholar]
  • Pulkkinen A, Bernabeu E, Thomson A, Viljanen A, Pirjola R, et al. 2017. Geomagnetically induced currents: Science, engineering and applications readiness. Space Weather 15: DOI: 10.1002/2016SW001501. [Google Scholar]
  • Saito T. 1978. Long-period irregular magnetic pulsations Pi3. Space Sci Rev 21: 427–467. DOI: 10.1007/BF00173068. [CrossRef] [Google Scholar]
  • Sakharov YaA, Danilin AN, Ostafiychuk RM. 2007. Registration of GIC in power systems of the Kola Peninsula. Proc. of 7-th symp. on Electromagnetic Compatibility and Electromagnetic Ecology, Institute of Electrical and Electronics Engineers (IEEE), St-Petersburg: 291–293. [Google Scholar]
  • Sakharov YaA, Kudryashova NV, Danilin AN, Ostafiychuk RM, Saranskiy SN. 2009a. Geomagnetic disturbances and railway automatic failures. Proc. of 8th Intern. Symp. on Electromagnetic Compatibility and Electromagnetic Ecology, Institute of Electrical and Electronics Engineers (IEEE), St-Petersburg: 235–236. [Google Scholar]
  • Sakharov YaA, Danilin AN, Ostafiychuk RM, Katkalov YuV, Kudryashova NV. 2009b. Geomagnetically induced currents in the power systems of the Kola peninsula at solar minimum. Proc. of 8th Symp. on Electromagnetic Compatibility and Electromagnetic Ecology, Institute of Electrical and Electronics Engineers (IEEE), St-Petersburg: 237–238. [Google Scholar]
  • Schrijver CJ, Dobbins R, Murtagh W, Petrinec SM. 2014. Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment. Space Weather 12: 487–498. DOI: 10.1002/2014SW001066. [CrossRef] [Google Scholar]
  • Schulte in den Baumen H, Moran D, Lenzen M, Cairns I, Steenge A. 2014. How severe space weather can disrupt global supply chains. Nat Hazards Earth Syst Sci 14: 2749–2759. DOI: 10.5194/nhess-14-2749-2014. [CrossRef] [Google Scholar]
  • Trivedi NB, Vitorello A, Kabata W, Dutra SLG, Padilha AL, et al. 2007. Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: A case study. Space Weather 5(4): 1–10: DOI: 10.1029/2006SW000282. [Google Scholar]
  • Vakhnina VV, Kuvshinov AA, Shapovalov VA, Chernenko AN, Kretov DA. 2015. The development of models for assessment of the geomagnetically induced currents impact on electric power grids during geomagnetic storms. Adv Elect Comp Eng 15: 49–54. DOI: 10.4316/AECE.2015.01007. [CrossRef] [Google Scholar]
  • Viljanen A. 1997. The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophys Res Lett 24: 631–634. DOI: 10.1029/97GL00538. [CrossRef] [Google Scholar]
  • Viljanen A. 1998. Relation of geomagnetically induced currents and local geomagnetic field variations. IEEE Trans Power Delivery 13: 1285–1290. DOI: 10.1109/61.714497. [CrossRef] [Google Scholar]
  • Viljanen A. 2011. European project to improve models of geomagnetically induced currents. Space Weather 9: S07007. DOI: 10.1029/2011SW000680. [CrossRef] [Google Scholar]
  • Viljanen A, Nevanlinna H, Pajunpaa K, Pulkkinen A. 2001. Time derivative of the geomagnetic field as an activity indicator. Ann Geophys 19: 1107–1118. [CrossRef] [Google Scholar]
  • Viljanen A, Pulkkinen A, Amm O, Pirjola R, Korja T, BEAR Working Group. 2004. Working Group. Fast computation of the geoelectric field using the method of elementary current systems and planar Earth models. Ann Geophys 22: 101–113. [CrossRef] [Google Scholar]
  • Viljanen A, Wintoft P, Wik M. 2015. Regional estimation of geomagnetically induced currents based on the local magnetic or electric field. J Space Weather Space Clim 5: A24. DOI: 10.1051/swsc/2015022. [CrossRef] [EDP Sciences] [Google Scholar]
  • Vorobjev VG, Yagodkina OI, Zverev VL. 1999. Morphological features of bipolar magnetic impulsive events and associated interplanetary medium signatures. J Geophys Res 104: 4595–4608. [CrossRef] [Google Scholar]
  • Watari S, Kunitake M, Kitamura K, Hori T, Kikuchi T, et al. 2009. Measurements of geomagnetically induced current in a power grid in Hokkaido, Japan. Space Weather 7(3): s03002. DOI: 10.1029/2008SW000417. [Google Scholar]
  • Weigel RS, Klimas AJ, Vassiliadis D. 2003. Solar wind coupling to and predictability of ground magnetic fields and their time derivatives. J Geophys Res 108: 1298. DOI: 10.1029/2002JA009627. [CrossRef] [Google Scholar]
  • Wintoft P, Wik M, Viljanen A. 2015. Solar wind driven empirical forecast models of the time derivative of the ground magnetic field. J Space Weather Space Clim 5: A7. DOI: 10.1051/swsc/2015008. [CrossRef] [EDP Sciences] [Google Scholar]
  • Zanetti L, Anderson B, Potemra T, Kappenman J, Lesher R, Feero W. 1994. Ionospheric currents correlated with geomagnetic induced currents: Freja magnetic field measurements and the Sunburst Monitor System. Geophys Res Lett 21: 1867–1870. DOI: 10.1029/94GL01425. [CrossRef] [Google Scholar]
  • Zhang JJ, Wang C, Sun TR, Liu CM, Wang KR. 2015. GIC due to storm sudden commencement in low-latitude high-voltage power network in China: Observation and simulation. Space Weather 13: 643–655. DOI: 10.1002/2015SW001263. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.