Open Access
J. Space Weather Space Clim.
Volume 9, 2019
Article Number A25
Number of page(s) 13
Published online 16 July 2019
  • Astafyeva E, Zakharenkova I, Förster M. 2015. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview. J Geophys Res Space Phys 120: 9023–9037. DOI: 10.1002/2015JA021629. [CrossRef] [Google Scholar]
  • Buchau J, Reinisch BW, Weber EJ, Moore JG. 1983. Structure and dynamics of the winter polar cap F region. Radio Sci 18: 995–1010. DOI: 10.1029/RS018i006p00995. [CrossRef] [Google Scholar]
  • Carlson H, Oksavik K, Moen J, van Eycken A, Guio P. 2002. ESR mapping of polar-cap patches in the dark cusp. Geophys Res Lett 29(10): 1386. DOI: 10.1029/2001GL014087. [CrossRef] [Google Scholar]
  • Carlson HC, Oksavik K, Moen J. 2008. On a new process for cusp irregularity production. Ann Geophys 26: 2871–2885. DOI: 10.5194/angeo-26-2871-2008. [CrossRef] [Google Scholar]
  • Carlson H. 2012. Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques. Radio Sci 47: RS0L21. DOI: 10.1029/2011RS004946. [CrossRef] [Google Scholar]
  • Carter BA, Yizengaw E, Pradipta R, Retterer JM, Groves K, Valladares C, Caton R, Bridgwood C, Norman R, Zhang K. 2016. Global equatorial plasma bubble occurrence during the 2015 St. Patrick’s Day storm. J Geophys Res Space Phys 121: 894–905. DOI: 10.1002/2015JA022194. [CrossRef] [Google Scholar]
  • Chartier AT, Mitchell CN, Miller ES. 2018. Annual occurrence rates of ionospheric polar cap patches observed using swarm. J Geophys Res Space Phys 123: 2327–2335. DOI: 10.1002/2017JA024811. [Google Scholar]
  • Cherniak I, Zakharenkova I, Redmon RJ. 2015. Dynamics of the high-latitude ionospheric irregularities during the 17 March 2015 St. Patrick’s Day storm: Ground-based GPS measurements. Space Weather 13(9): 585–597. DOI: 10.1002/2015SW001237. [CrossRef] [Google Scholar]
  • Cherniak I, Zakharenkova I. 2016. High-latitude ionospheric irregularities: differences between ground- and space-based GPS measurements during the 2015 St. Patrick’s Day storm. Earth Planet Space 68(136): 1–13. DOI: 10.1186/s40623-016-0506-1. [CrossRef] [Google Scholar]
  • Chisham G, Lester M, Milan SE, Freeman MP, Bristow WA, et al. 2007. A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surv Geophys 28: 33–109. DOI: 10.1007/s10712-007-9017-8. [CrossRef] [Google Scholar]
  • Coley WR, Heelis RA. 1995. Adaptive identification and characterization of polar ionization patches. J Geophys Res 100(A12): 23819–23827. DOI: 10.1029/95JA02700. [CrossRef] [Google Scholar]
  • Coley WR, Heelis RA. 1998. Structure and occurrence of polar ionization patches. J Geophys Res 103(A2): 2201–2208. DOI: 10.1029/97JA03345. [CrossRef] [Google Scholar]
  • Coster A, Foster J, Erickson P. 2003. Monitoring the Ionosphere with GPS space weather. GPS World 14(5): 42. [Google Scholar]
  • Crain DJ, Sojka JJ, Schunk RW, Zhu L. 1994. Modeling Sun-aligned polar cap arcs. Radio Sci 29(1): 269–281. DOI: 10.1029/93RS01512. [CrossRef] [Google Scholar]
  • Crowley G. 1996. Critical review on ionospheric patches and blobs. In: Review of radio science, 1992–1996, Stone WR (Ed.), Oxford Univ. Press, New York, NY, pp. 619. [Google Scholar]
  • Crowley G, Ridley AJ, Deist D, Wing S, Knipp DJ, Emery BA, Foster J, Heelis R, Hairston M, Reinisch BW. 2000. Transformation of high-latitude ionospheric F region patches into blobs during the March 21, 1990, storm. J Geophys Res 105(A3): 5215–5230. DOI: 10.1029/1999JA900357. [CrossRef] [Google Scholar]
  • Finlay CC, Olsen N, Tøffner-Clausen L. 2015. DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model. Earth Planet Space 67: 157–189. DOI: 10.1186/s40623-015-0274-3. [CrossRef] [Google Scholar]
  • Foster JC. 1993. Storm-time plasma transport at middle and high latitudes. J Geophys Res 98: 1675–1689. DOI: 10.1029/92JA02032. [CrossRef] [Google Scholar]
  • Foster JC, Coster AJ, Erickson PJ, Holt JM, Lind FD, et al. 2005. Multi-radar observations of the polar tongue of ionization. J Geophys Res 110: A09S31. DOI: 10.1029/2004JA010928. [CrossRef] [Google Scholar]
  • Goodwin LV, Iserhienrhien B, Miles DM, Patra S, Meeren C, Buchert SC, Moen J. 2015. Swarm in situ observations of F region polar cap patches created by cusp precipitation. Geophys Res Lett 42: 996–1003. DOI: 10.1002/2014GL062610. [CrossRef] [Google Scholar]
  • Greenwald RA, Baker KB, Dudeney JR, Pinnock M, Jones TB, et al. 1995. A global view of high latitude convection. Space Sci Rev 71: 761–796. DOI: 10.1007/BF00751350. [CrossRef] [Google Scholar]
  • Heilig B, Lühr H, Rother M. 2007. Comprehensive study of ULF upstream waves observed in the topside ionosphere by CHAMP and on the ground. Ann Geophys 25: 737–754. DOI: 10.5194/angeo-25-737-2007. [CrossRef] [Google Scholar]
  • Hill GE. 1963. Sudden enhancements of F-layer ionization in polar regions. J Atmos Sci 20(6): 492–497. DOI: 10.1175/1520-0469(1963)020%3C0492:SEOLII%3E2.0.CO;2. [CrossRef] [Google Scholar]
  • Hosokawa K, Tsugawa K, Shiokawa T, Otsuka Y, Nishitani N, Ogawa T, Hairston M. 2010. Dynamic temporal evolution of polar cap tongue of ionization during magnetic storm. J Geophys Res 115: A12333. DOI: 10.1029/2010JA015848. [CrossRef] [Google Scholar]
  • Jacobsen KS, Andalsvik YL. 2016. Overview of the 2015 St. Patrick’s day storm and its consequences for RTK and PPP positioning in Norway. J Space Weather Space Clim 6: A9. DOI: 10.1051/swsc/2016004. [CrossRef] [Google Scholar]
  • Jin Y, Moen J, Miloch WJ. 2014. GPS scintillation effects associated with polar cap patches and substorm auroral activity: Direct comparison. J Space Weather Space Clim 4: A23. DOI: 10.1051/SWSC/2014019. [CrossRef] [EDP Sciences] [Google Scholar]
  • Jin Y, Moen JI, Miloch WJ, Clausen LBN, Oksavik K. 2016. Statistical study of the GNSS phase scintillation associated with two types of auroral blobs. J Geophys Res Space Phys 121: 4679–4697. DOI: 10.1002/2016JA022613. [CrossRef] [Google Scholar]
  • Jin Y, Oksavik K. 2018. GPS scintillations and losses of signal lock at high latitudes during the 2015 St. Patrick’s Day storm. J Geophys Res Space. DOI: 10.1002/2018JA025933. [Google Scholar]
  • Kersley L, Pryse SE, Wheadon NS. 1988. Small scale irregularities associated with a high latitude electron density gradient: Scintillation and EISCAT observations. J Atmos Sol Terr Phys 50(6): 557–563. DOI: 10.1016/0021-9169(88)90114-6. [CrossRef] [Google Scholar]
  • Keskinen MJ, Mitchell HG, Fedder JA, Satyanarayana P, Zalesak ST, Huba JD. 1988. Nonlinear evolution of the Kelvin-Helmholtz instability in the high-latitude ionosphere. J Geophys Res 93(A1): 137–152. DOI: 10.1029/JA093iA01p00137. [CrossRef] [Google Scholar]
  • Krankowski A, Shagimuratov I, Baran L, Epishov I, Tepenitzyna N. 2006. The occurrence of polar cap patches in TEC fluctuations detected using GPS measurements in Southern Hemisphere. Adv Space Res 38: 2601–2609. [CrossRef] [Google Scholar]
  • Laundal KM, Hatch SM, Moretto T. 2019. Magnetic effects of plasma pressure gradients in the upper F region. Geophys Res Lett 46: 2355–2363. DOI: 10.1029/2019GL081980. [CrossRef] [Google Scholar]
  • Liu J, Nakamura T, Liu L, Wang W, Balan N, Nishiyama T, Hairston MR, Thomas EG. 2015. Formation of polar ionospheric tongue of ionization during minor geomagnetic disturbed conditions. J Geophys Res Space Phys 120: 6860–6873. DOI: 10.1002/2015JA021393. [CrossRef] [Google Scholar]
  • Liu J, Wang W, Burns A, Solomon SC, Zhang S, Zhang Y, Huang C. 2016. Relative importance of horizontal and vertical transports to the formation of ionospheric storm-enhanced density and polar tongue of ionization. J Geophys Res Space Phys 121: 8121–8133. DOI: 10.1002/2016JA022882. [CrossRef] [Google Scholar]
  • Lockwood M, Carlson HC. 1992. Production of polar cap electron density patches by transient magnetopause reconnection. Geophys Res Lett 19(17): 1731–1734. [CrossRef] [Google Scholar]
  • Lomidze L, Knudsen DJ, Burchill J, Kouznetsov A, Buchert SC. 2018. Calibration and validation of swarm plasma densities and electron temperatures using ground-based radars and satellite radio-occultation measurements. Radio Sci 53: 15–36. [CrossRef] [Google Scholar]
  • Lühr H, Rother M, Maus S, Mai W, Cooke D. 2003. The diamagnetic effect of the equatorial Appleton anomaly: Its characteristics and impact on geomagnetic field modeling. Geophys Res Lett 30(17): 1906. DOI: 10.1029/2003GL017407. [Google Scholar]
  • Moen JI, Oksavik K, Abe T, Lester M, Saito Y, Bekkeng TA, Jacobsen KS. 2012. First in-situ measurements of HF radar echoing targets. Geophys Res Lett 39: L07104. DOI: 10.1029/2012GL051407. [Google Scholar]
  • Noja M, Stolle C, Park J, Lühr H. 2013. Long-term analysis of ionospheric polar patches based on CHAMP TEC data. Radio Sci 48: 289–301. DOI: 10.1002/rds.20033. [CrossRef] [Google Scholar]
  • Oksavik K, Ruohoniemi JM, Greenwald RA, Baker JBH, Moen J, Carlson HC, … , Lester M. 2006. Observations of isolated polar cap patches by the European Incoherent Scatter (EISCAT) Svalbard and Super Dual Auroral Radar Network (SuperDARN) Finland radars. J Geophys Res 111: A05310. DOI: 10.1029/2005JA011400. [CrossRef] [Google Scholar]
  • Park J, Ehrlich R, Lühr H, Ritter P. 2012. Plasma irregularities in the high-latitude ionospheric F-region and their diamagnetic signatures as observed by CHAMP. J Geophys Res 117: A10. DOI: 10.1029/2012JA018166. [Google Scholar]
  • Pedersen T, Fejer B, Doe R, Weber E. 2000. An incoherent scatter radar technique for determining two-dimensional horizontal ionization structure in polar cap F region patches. J Geophys Res 105(A5): 10,637–10,655. [CrossRef] [Google Scholar]
  • Pi X, Mannucci AJ, Lindqwister UJ, Ho CM. 1997. Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys Res Lett 24(18): 2283–2286. DOI: 10.1029/97GL02273. [CrossRef] [Google Scholar]
  • Pinnock M, Rodger A, Dudeney J, Baker K, Newell P, Greenwald R, Greenspan M. 1993. Observations of an enhanced convection channel in the cusp ionosphere. J Geophys Res 98(A3): 3767–3776. [CrossRef] [Google Scholar]
  • Prikryl P, Ghoddousi-Fard R, Weygand JM, Viljanen A, Connors M, et al. 2016. GPS phase scintillation at high latitudes during the geomagnetic storm of 17–18 March 2015. J Geophys Res Space Phys 121: 10448–10465. DOI: 10.1002/2016JA023171. [CrossRef] [Google Scholar]
  • Robinson RM, Tsunoda RT, Vickrey JF, Guerin L. 1985. Sources of F region ionization enhancements in the nighttime auroral zone. J Geophys Res 90(A8): 7533–7546. DOI: 10.1029/JA090iA08p07533. [CrossRef] [Google Scholar]
  • Rodger AS, Moffett RJ, Quegan S. 1992. The role of ion drift in the formation of ionization troughs in the mid- and high-latitude ionosphere – A review. J Atmos Sol Terr Phys 54(1): 1–30. DOI: 10.1016/0021-9169(92)90082-V. [CrossRef] [Google Scholar]
  • Rodger AS, Pinnock M, Dudeney JR, Baker KB, Greenwald RA. 1994. A new mechanism for polar patch formation. J Geophys Res 99: 6425–6436. [CrossRef] [Google Scholar]
  • Spicher A, Clausen LBN, Miloch WJ, Lofstad V, Jin Y, Moen JI. 2017. Interhemispheric study of polar cap patch occurrence based on Swarm in situ data. J Geophys Res Space Phys 122: 3837–3851. DOI: 10.1002/2016JA023750. [CrossRef] [Google Scholar]
  • Stolle C, Lilensten J, Schlüter S, Jacobi Ch, Rietveld M, Lühr H. 2006a. Observing the north polar ionosphere on 30 October 2003 by GPS imaging and IS radars. Ann Geophys 24: 107–113. DOI: 10.5194/angeo-24-107-2006. [CrossRef] [Google Scholar]
  • St.-Maurice J-P, Hanson WB. 1982. Ion frictional heating at high latitudes and its possible use for an in situ determination of neutral thermospheric winds and temperatures. J Geophys Res 87: 7580–7602. [CrossRef] [Google Scholar]
  • Stolle C, Lühr H, Rother M, Balasis G. 2006b. Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J Geophys Res 111: A2. DOI: 10.1029/2005JA011184. [CrossRef] [Google Scholar]
  • Sust M, Zangerl F, Montenbruck O, Buchert S, Garcia-Rodriguez A. 2014. Spaceborne GNSS-receiving system performance prediction and validation. In: NAVITEC 2014, ESA Workshop on Satellite Navigation Technologies and GNSS Signals and Signal Processing, Noordwijk, Netherlands. [Google Scholar]
  • Valladares CE, Basu S, Buchau J, Friis-Christensen E. 1994. Experimental evidence for the formation and entry of patches into the polar cap. Radio Sci 29: 167–194. [CrossRef] [Google Scholar]
  • van den Ijssel J, Forte B, Montenbruck O. 2016. Impact of Swarm GPS receiver updates on POD performance. Earth Planet Space 68: 85. DOI: 10.1186/s40623-016-0459-4. [CrossRef] [Google Scholar]
  • Wang Y, Zhang Q-H, Jayachandran PT, Lockwood M, Zhang S-R, Moen J, Xing Z-Y, Ma Y-Z, Lester M. 2016. A comparison between large-scale irregularities and scintillations in the polar ionosphere. Geophys Res Lett 43: 4790–4798. DOI: 10.1002/2016GL069230. [CrossRef] [Google Scholar]
  • Weber EJ, Buchau J, Moore JG, Sharber JR, Livingston RC, Winningham JD, Reinisch BW. 1984. F layer ionization patches in the polar cap. J Geophys Res 89: 1683–1694. DOI: 10.1029/JA089iA03p01683. [CrossRef] [Google Scholar]
  • Weber E, Klobuchar J, Buchau J, Carlson H Jr., Livingston R, de la Beaujardiere O, McCready M, Moore J, Bishop G. 1986. Polar cap F layer patches: Structure and dynamics. J Geophys Res 91(A11): 12121–12129. [CrossRef] [Google Scholar]
  • Weber EJ, Kelley MC, Ballenthin JO, Basu S, Carlson HC, et al. 1989. Rocket measurements within a polar cap arc: Plasma, particle, and electric circuit parameters. J Geophys Res 94(A6): 6692–6712. DOI: 10.1029/JA094iA06p06692. [CrossRef] [Google Scholar]
  • Xiong C, Lühr H, Wang H, Johnsen MG. 2014. Determining the boundaries of the auroral oval from CHAMP fieldaligned current signatures – Part 1. Ann Geophys 32: 609–622. DOI: 10.5194/angeo-32-609-2014. [CrossRef] [Google Scholar]
  • Xiong C, Stolle C, Lühr H. 2016. The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities. Space Weather 14: 563–577. DOI: 10.1002/2016SW001439. [CrossRef] [Google Scholar]
  • Xiong C, Stolle C, Park J. 2018. Climatology of GPS signal loss observed by Swarm satellites. Ann Geophys 36: 679–693. DOI: 10.5194/angeo-36-679-2018. [CrossRef] [Google Scholar]
  • Zangerl F, Griesauer F, Sust M, Montenbruck O, Buchert B, Garcia A. 2014. SWARM GPS precise orbit determination receiver initial in-orbit performance evaluation. In: Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+), Tampa, Florida, 8–12 September, 2014, pp. 1459–1468. [Google Scholar]
  • Zhang Q-H, Zhang BC, Lockwood M, Hu HQ, Moen J, Ruohoniemi JM, et al. 2013a. Direct observations of the evolution of polar cap ionization patches. Science 339: 1597–1600. DOI: 10.1126/science.1231487. [CrossRef] [Google Scholar]
  • Zhang Q-H, Zhang B-C, Moen J, Lockwood M, McCrea IW, Yang H-G, Hu H-Q, Liu R-Y, Zhang S-R, Lester M. 2013b. Polar cap patch segmentation of the tongue of ionization in the morning convection cell. Geophys Res Lett 40: 2918–2922. DOI: 10.1002/grl.50616. [CrossRef] [Google Scholar]
  • Zhang Q-H, Lockwood M, Foster JC, Zhang S-R, Zhang B-C, McCrea IW, Moen J, Lester M, Ruohoniemi JM. 2015. Direct observations of the full Dungey convection cycle in the polar ionosphere for southward interplanetary magnetic field conditions. J Geophys Res Space Phys 120: 4519–4530. DOI: 10.1002/2015JA021172. [CrossRef] [Google Scholar]
  • Zhou Y-L, Lühr H, Xiong C, Pfaff RF. 2016. Ionospheric storm effects and equatorial plasma irregularities during the 17–18 March 2015 event. J Geophys Res Space Phys 121: 9146–9163. DOI: 10.1002/2016JA023122. [CrossRef] [Google Scholar]
  • Zou Y, Nishimura Y, Burchill JK, Knudsen DJ, Lyons LR, et al. 2016. Localized field-aligned currents in the polar cap associated with airglow patches. J Geophys Res Space Phys 121: 10172–10189. DOI: 10.1002/2016JA022665. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.