Open Access
Issue |
J. Space Weather Space Clim.
Volume 9, 2019
|
|
---|---|---|
Article Number | A22 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/swsc/2019019 | |
Published online | 27 June 2019 |
- Barnes G, Longcope DW, Leka KD. 2005. Implementing a magnetic charge topology model for solar active regions. ApJ 629(1): 561–571. DOI: 10.1086/431175. [Google Scholar]
- Barnes G, Leka KD, Schrijver CJ, et al. 2016. A comparison of flare forecasting methods. I. Results from the All-Clear workshop. ApJ 829(2): 89. DOI: 10.3847/0004-637X/829/2/89. [NASA ADS] [CrossRef] [Google Scholar]
- Benz AO. 2017. Flare Observations. Liv Rev Sol Phys 14(2): 59. DOI: 10.1007/s41116-016-0004-3. [Google Scholar]
- Bloomfield DS, Higgins PA, McAteer RTJ, Gallagher PT. 2012. Toward reliable benchmarking of solar flare forecasting methods. ApJL 747(2): L41. DOI: 10.1088/2041-8205/747/2/L41. [Google Scholar]
- Camporeale E. 2019. The challenge of machine learning in space weather nowcasting and forecasting. arXiv:1903.05192. [Google Scholar]
- Contarino L, Zuccarello F, Romano P, Spadaro D, Ermolli I. 2009. Flare forecasting based on sunspot-groups characteristics. Acta Geophys 57(1): 52–63. DOI: 10.2478/s11600-008-0067-1. [CrossRef] [Google Scholar]
- Falconer DA, Moore RL, Gary GA. 2008. Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity. ApJ 689(2): 1433–1442. DOI: 10.1086/591045. [Google Scholar]
- Florios K, Kontogiannis I, Park S-H, et al. 2018. Forecasting solar flares using magnetogram-based predictors and machine learning. Sol Phys 293(2): 42. DOI: 10.1007/s11207-018-1250-4. [Google Scholar]
- Georgoulis MK, Rust DM. 2007. Quantitative forecasting of major solar flares. ApJ 661(1): L109–L112. DOI: 10.1086/518718. [NASA ADS] [CrossRef] [Google Scholar]
- Inceoglu F, Jeppesen JH, Kongstad P, et al. 2018. Using machine learning methods to forecast if solar flares will be associated with CMEs and SEPs. ApJ 861(2): 128. DOI: 10.3847/1538-4357/aac81e. [CrossRef] [Google Scholar]
- Jaynes ET. 2003. Probability Theory – The Logic of Science. Cambridge University Press. DOI: 10.1017/CBO9780511790423 [Google Scholar]
- Kim T, Park E, Lee H, et al. 2019. Solar farside magnetograms from deep learning analysis of STEREO/EUVI data. Nat Astron 3: 397–400. DOI: 10.1038/s41550-019-0711-5. [Google Scholar]
- Kontogiannis I, Georgoulis MK, Park S-H, Guerra JA. 2018. Testing and improving a set of morphological predictors of flaring activity. Sol Phys 293(6): 18. DOI: 10.1007/s11207-018-1317-2. [CrossRef] [Google Scholar]
- Korsós MB, Erdélyi R. 2016. On the state of a solar active region before flares and CMEs. ApJ 823(2): 153. DOI: 10.3847/0004-637X/823/2/153. [CrossRef] [Google Scholar]
- Korsós MB, Ludmány A, Erdélyi R, Baranyi T. 2015. On flare predictability based on sunspot group evolution. ApJL 802(2): L21. DOI: 10.1088/2041-8205/802/2/L21. [CrossRef] [Google Scholar]
- Korsós MB, Yang S, Erdélyi R. 2019. Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes. J Space Weather Space Clim 9: A6. DOI: 10.1051/swsc/2019002. [CrossRef] [Google Scholar]
- Leka KD, Barnes G. 2003. Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. I. Data, General Approach, and Sample Results. ApJ 595(2): 1277–1295. DOI: 10.1086/377511. [CrossRef] [Google Scholar]
- Romano P, Elmhamdi A, Falco M, et al. 2018. Homologous white light solar flares driven by photospheric shear motions. ApJL 852(1): L10. DOI: 10.3847/2041-8213/aaa1df. [CrossRef] [Google Scholar]
- Romano P, Elmhamdi A, Kordi A. 2019. Two strong white-light solar flares in AR NOAA 12673 as potential clues for stellar superflares. Sol Phys 294(1): 4. DOI: 10.1007/s11207-018-1388-0. [Google Scholar]
- Romano P, Zuccarello F. 2007. Photospheric magnetic evolution of super active regions. A&A 474(2): 633–637. DOI: 10.1051/0004-6361:20078110. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Romano P, Zuccarello F, Guglielmino SL, et al. 2015. Recurrent flares in active region NOAA 11283. A&A 582: A55. DOI: 10.1051/0004-6361/201525887. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Schrijver CJ. 2007. A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. ApJL 655(2): L117–L120. DOI: 10.1086/511857. [NASA ADS] [CrossRef] [Google Scholar]
- Ternullo M, Contarino L, Romano P, Zuccarello F. 2006. A statistical analysis of sunspot groups hosting M and X flares. Astron Nachr 327(1): 36–43. DOI: 10.1002/asna.200510485. [CrossRef] [Google Scholar]
- Wheatland MS. 2004. A bayesian approach to solar flare prediction. ApJ 609(2): 1134–1139. DOI: 10.1086/421261. [NASA ADS] [CrossRef] [Google Scholar]
- Yuan Y, Shih FY, Jing J, Wang H-M. 2010. Automated flare forecasting using a statistical learning technique. Res Astron Astrophys 10(8): 785–796. DOI: 10.1088/1674-4527/10/8/008. [Google Scholar]
- Zirin H. 1998. The Astrophysics of the Sun, by H. Zirin. Cambridge University Press, Cambridge, UK, 448 p. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.