Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 10 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2021041 | |
Published online | 06 April 2022 |
- Ball WT, Alsing J, Mortlock DJ, Rozanov EV, Tummon F, Haigh JD. 2017. Reconciling differences in stratospheric ozone composites. Atmos Chem Phys 17: 12269–12302. https://doi.org/10.5194/acp-17-12269-2017. [CrossRef] [Google Scholar]
- Ball WT, Haigh JD, Rozanov EV, Kuchar A, Sukhodolov T, Tummon F, Shapiro AV, Schmutz W. 2016a. High solar cycle spectral variations inconsistent with stratospheric ozone observations. Nat Geosci 9(3): 206–209. https://doi.org/10.1038/ngeo2640. [CrossRef] [Google Scholar]
- Ball WT, Schmutz W, Fehlmann A, Finsterle W, Walter B. 2016b. Assessing the beginning to end-of-mission sensitivity change of the PREcision MOnitor Sensor total solar irradiance radiometer (PREMOS/PICARD). J Space Weather Space Clim 6: A32. https://doi.org/10.1051/swsc/2016026. [CrossRef] [EDP Sciences] [Google Scholar]
- BenMoussa A, Gissot S, Schühle U, Del Zanna G, Auchère F, et al. 2013. On-orbit degradation of solar instruments. Solar Phys 288: 389–434. https://doi.org/10.1007/s11207-013-0290-z. [CrossRef] [Google Scholar]
- Bolduc C, Bourqui MS, Charbonneau P. 2015. A comparison of stratospheric photochemical response to different reconstructions of solar ultraviolet radiative variability. J Atmos Sol-Terr Phys 132: 22–32. https://doi.org/10.1016/j.jastp.2015.06.008. [CrossRef] [Google Scholar]
- Bremer J. 2005. Detection of long-term trends in the mesosphere/lower thermosphere from ground-based radio propagation measurements. Adv Space Res 35: 1398–1404. https://doi.org/10.1016/j.asr.2005.01.021. [CrossRef] [Google Scholar]
- Chandler R, Scott M. 2011. Statistical methods for trend detection and analysis in the environmental sciences. Wiley, Chichester, UK. https://doi.org/10.1002/9781119991571. [CrossRef] [Google Scholar]
- Clette F, Lefèvre L, Cagnotti M, Cortesi S, Bulling A. 2016. The revised Brussels-Locarno Sunspot Number (1981–2015). Sol Phys 291(9–10): 2733–2761. https://doi.org/10.1007/s11207-016-0875-4. [CrossRef] [Google Scholar]
- Coddington O, Lean JL, Pilewskie P, Snow M, Lindholm D. 2016. A solar irradiance climate data record. Bull Am Meteorol Soc 97: 1265. https://doi.org/10.1175/BAMS-D-14-00265.1. [CrossRef] [Google Scholar]
- d’Agostini G. 2003. Bayesian reasoning in data analysis: A critical introduction. World Scientific Publishing Co, Singapore. [CrossRef] [Google Scholar]
- Deland MT, Cebula RP. 2012. Solar UV variations during the decline of cycle 23. J Atmos Sol-Terr Phys 77: 225–234. https://doi.org/10.1016/j.jastp.2012.01.007. [CrossRef] [Google Scholar]
- Didkovsky L, Judge D, Wieman S, Woods T, Jones A. 2012. EUV SpectroPhotometer (ESP) in Extreme Ultraviolet Variability Experiment (EVE): Algorithms and Calibrations. Solar Physics 275: 179–205. https://doi.org/10.1007/s11207-009-9485-8. [CrossRef] [Google Scholar]
- Dudok de Wit T, Bruinsma S. 2017. The 30 cm radio flux as a solar proxy for thermosphere density modelling. J Space Weather Space Clim 7: A9. https://doi.org/10.1051/swsc/2017008. [CrossRef] [EDP Sciences] [Google Scholar]
- Dudok de Wit T, Kopp G, Fröhlich C, Schöll M. 2017. Methodology to create a new total solar irradiance record: Making a composite out of multiple data records. Geophys Res Lett 44: 1196–1203. https://doi.org/10.1002/2016GL071866. [Google Scholar]
- Dudok de Wit T, Kopp G, Shapiro A, Witzke V, Kretzschmar M. 2018. Response of Solar Irradiance to Sunspot-area Variations. Astrophys J 853: 197. https://doi.org/10.3847/1538-4357/aa9f19. [CrossRef] [Google Scholar]
- Dudok de Wit T, Kretzschmar M, Lilensten J, Woods T. 2009. Finding the best proxies for the solar UV irradiance. Geophys Res Lett 36(10): 107. https://doi.org/10.1029/2009GL037825. [CrossRef] [Google Scholar]
- Ermolli I, Matthes K, Dudok de Wit T, Krivova NA, Tourpali K, et al. 2013. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos Chem Phys 13(8): 3945–3977. https://doi.org/10.5194/acp-13-3945-2013. [CrossRef] [Google Scholar]
- Fox N, Kaiser-Weiss A, Schmutz W, Thome K, Young D, Wielicki B, Winkler R, Woolliams E. 2011. Accurate radiometry from space: an essential tool for climate studies. Philos Trans Royal Soc A 369(1953): 4028–4063. https://doi.org/10.1098/rsta.2011.0246. [CrossRef] [Google Scholar]
- Fröhlich C. 2009. Evidence of a long-term trend in total solar irradiance. A&A 501: L27–L30. https://doi.org/10.1051/0004-6361/200912318. [CrossRef] [EDP Sciences] [Google Scholar]
- Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, et al. 2010. Solar influences on climate. Rev Geophys 48(4): 1–53. https://doi.org/10.1029/2009RG000282. [Google Scholar]
- Haigh JD, Winning AR, Toumi R, Harder JW. 2010. An influence of solar spectral variations on radiative forcing of climate. Nature 467: 696–699. https://doi.org/10.1038/nature09426. [CrossRef] [Google Scholar]
- Harder JW, Fontenla JM, Pilewskie P, Richard EC, Woods TN. 2009. Trends in solar spectral irradiance variability in the visible and infrared. Geophys Res Lett 36: L07801. https://doi.org/10.1029/2008GL036797. [Google Scholar]
- Harder JW, Thuillier G, Richard EC, Brown SW, Lykke KR, Snow M, McClintock WE, Fontenla JM, Woods TN, Pilewskie P. 2010. The SORCE SIM solar spectrum: Comparison with recent observations. Sol Phys 263: 3–24. https://doi.org/10.1007/s11207-010-9555-y. [CrossRef] [Google Scholar]
- Hastie T, Tibshirani R, Friedman J. 2009. The elements of statistical learning: Data mining, inference, and prediction, 2nd edn. Springer, New York. [Google Scholar]
- Kopp G. 2014. An assessment of the solar irradiance record for climate studies. J Space Weather Space Clim 4(27): A14. https://doi.org/10.1051/swsc/2014012. [CrossRef] [EDP Sciences] [Google Scholar]
- Kopp G, Fehlmann A, Finsterle W, Harber D, Heuerman K, Willson R. 2012. Total solar irradiance data record accuracy and consistency improvements. Metrologia 49: S29–S33. https://doi.org/10.1088/0026-1394/49/2/S29. [CrossRef] [Google Scholar]
- Kopp G, Lawrence G, Rottman G. 2005. The total irradiance monitor (TIM): Science results. Sol Phys 230: 129–139. https://doi.org/10.1007/s11207-005-7433-9. [CrossRef] [Google Scholar]
- Laine M, Latva-Pukkila N, Kyrölä E. 2014. Analysing time-varying trends in stratospheric ozone time series using the state space approach. Atmos Chem Phys 14: 9707–9725. https://doi.org/10.5194/acp-14-9707-2014. [CrossRef] [Google Scholar]
- Laštovička J. 2017. A review of recent progress in trends in the upper atmosphere. J Atmos Sol-Terr Phys 163: 2–13. https://doi.org/10.1016/j.jastp.2017.03.009. [CrossRef] [Google Scholar]
- Lean JL. 1991. Variations in the Sun’s radiative output. Rev Geophys 29: 505–535. [CrossRef] [Google Scholar]
- Lean JL. 2010. Cycles and trends in solar irradiance and climate. Wiley Interdiscip Rev Clim Change 1(1): 111–122. https://doi.org/10.1002/wcc.18. [CrossRef] [Google Scholar]
- Lean JL, DeLand MT. 2012. How does the sun’s spectrum vary? J Clim 25: 2555–2560. https://doi.org/10.1175/JCLI-D-11-00571.1. [CrossRef] [Google Scholar]
- Leroy SS, Anderson JG, Ohring G. 2008. Climate signal detection times and constraints on climate benchmark accuracy requirements. J Clim 21: 841–846. https://doi.org/10.1175/2007JCLI1946.1. [CrossRef] [Google Scholar]
- Ljung L. 1997. System identification: Theory for the user, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ. [Google Scholar]
- Lockwood M. 2011. Was UV spectral solar irradiance lower during the recent low sunspot minimum? J Geophys Res (Atmos) 116(D16): D16103. https://doi.org/10.1029/2010JD014746. [CrossRef] [Google Scholar]
- Mandal S, Krivova NA, Solanki SK, Sinha N, Banerjee D. 2020. Sunspot area catalog revisited: Daily cross-calibrated areas since 1874. A&A 640: A78. https://doi.org/10.1051/0004-6361/202037547. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Marchenko SV, DeLand MT, Lean JL. 2016. Solar spectral irradiance variability in cycle 24: observations and models. J Space Weather Space Clim 6: A40. https://doi.org/10.1051/swsc/2016036. [CrossRef] [EDP Sciences] [Google Scholar]
- Mauceri S, Pilewskie P, Richard E, Coddington O, Harder J, Woods T. 2018. Revision of the Sun’s spectral irradiance as measured by SORCE SIM. Sol Phys 293(12): 161. https://doi.org/10.1007/s11207-018-1379-1. [CrossRef] [Google Scholar]
- Mauceri S, Richard E, Pilewskie P, Harber D, Coddington O, Béland S, Chambliss M, Carson S. 2020. Degradation Correction of TSIS SIM. Sol Phys 295(11): 152. https://doi.org/10.1007/s11207-020-01707-y. [CrossRef] [Google Scholar]
- Meftah M, Bolsée D, Damé L, Hauchecorne A, Pereira N, Irbah A, Bekki S, Cessateur G, Foujols T, Thiéblemont R. 2016. Solar irradiance from 165 to 400 nm in 2008 and UV variations in three spectral bands during solar cycle 24. Sol Phys 291(12): 3527–3547. https://doi.org/10.1007/s11207-016-0997-8. [CrossRef] [Google Scholar]
- Meftah M, Damé L, Bolsée D, Pereira N, Snow M, et al. 2020. A new version of the SOLAR-ISS spectrum covering the 165–3000 nm spectral region. Sol Phys 295(2): 14. https://doi.org/10.1007/s11207-019-1571-y. [CrossRef] [Google Scholar]
- Morrill JS, Floyd L, McMullin D. 2014. Comparison of solar UV spectral irradiance from SUSIM and SORCE. Sol Phys 289(10): 3641–3661. https://doi.org/10.1007/s11207-014-0535-5. [CrossRef] [Google Scholar]
- Ohring G, Wielicki B, Spencer R, Emery B, Datla R. 2005. Satellite instrument calibration for measuring global climate change: Report of a workshop. Bull Am Meteorol Soc 86: 1303–1313. https://doi.org/10.1175/BAMS-86-9-1303. [CrossRef] [Google Scholar]
- Preminger DG, Walton SR. 2007. From sunspot area to solar variability: A linear transformation. Sol Phys 240: 17–23. https://doi.org/10.1007/s11207-007-0335-2. [CrossRef] [Google Scholar]
- Press WH, Teukolsky SA, Vetterling WT, Flannery BP. 2002. Numerical recipes: The art of scientific computing, 3rd edn. Cambridge University Press, Cambridge. [Google Scholar]
- Rasmussen CE, Williams C. 2006. Gaussian processes for machine learning. The MIT press. [Google Scholar]
- Reeves J, Chen J, Wang XL, Lund R, Lu Q. 2007. A review and comparison of changepoint detection techniques for climate data. J Appl Meteorol Climatol 46: 900–915. https://doi.org/10.1175/JAM2493.1. [CrossRef] [Google Scholar]
- Shapiro AV, Rozanov EV, Shapiro AI, Egorova TA, Harder J, Weber M, Smith AK, Schmutz W, Peter T. 2013. The role of the solar irradiance variability in the evolution of the middle atmosphere during 2004–2009. J Geophys Res (Atmos) 118: 3781–3793. https://doi.org/10.1002/jgrd.50208. [CrossRef] [Google Scholar]
- Snow M, Machol J, Viereck R, Woods T, Weber M, Woodraska D, Elliott J. 2019. A revised magnesium II core-to-wing ratio from SORCE SOLSTICE. Earth Space Sci 6(11): 2106–2114. https://doi.org/10.1029/2019EA000652. [CrossRef] [Google Scholar]
- Snow M, McClintock WE, Woods TN. 2010. Solar spectral irradiance variability in the ultraviolet from SORCE and UARS SOLSTICE. Adv Space Res 46: 296–302. https://doi.org/10.1016/j.asr.2010.03.027. [CrossRef] [Google Scholar]
- Snow M, Weber M, Machol J, Viereck R, Richard E. 2014. Comparison of Magnesium II core-to-wing ratio observations during solar minimum 23/24. J Space Weather Space Clim 4(27): A04. https://doi.org/10.1051/swsc/2014001. [CrossRef] [EDP Sciences] [Google Scholar]
- Solanki SK, Krivova NA, Haigh JD. 2013. Solar irradiance variability and climate. Annu Rev Astron Astrophys 51(1): 311–351. https://doi.org/10.1146/annurev-astro-082812-141007. [CrossRef] [Google Scholar]
- Staehelin J, Harris NRP, Appenzeller C, Eberhard J. 2001. Ozone trends: A review. Rev Geophys 39: 231–290. https://doi.org/10.1029/1999RG000059. [CrossRef] [Google Scholar]
- Tapping KF. 2013. The 10.7 cm solar radio flux (F10.7). Space Weather 11(7): 394–406. https://doi.org/10.1002/swe.20064. [CrossRef] [Google Scholar]
- Vourlidas A, Bruinsma S. 2018. EUV irradiance inputs to thermospheric density models: Open issues and path forward. Space Weather 16(1): 5–15. https://doi.org/10.1002/2017SW001725. [CrossRef] [Google Scholar]
- Wehrli C, Schmutz W, Shapiro AI. 2013. Correlation of spectral solar irradiance with solar activity as measured by VIRGO. A&A 556: L3. https://doi.org/10.1051/0004-6361/201220864. [CrossRef] [EDP Sciences] [Google Scholar]
- Wen G, Cahalan RF, Haigh JD, Pilewskie P, Oreopoulos L, Harder JW. 2013. Reconciliation of modeled climate responses to spectral solar forcing. J Geophys Res (Atmos) 118: 6281–6289. https://doi.org/10.1002/jgrd.50506. [CrossRef] [Google Scholar]
- Wielicki BA, Young DF, Mlynczak MG, Thome KJ, Leroy S, et al. 2013. Achieving climate change absolute accuracy in orbit. Bull Am Meteorol Soc 94(10): 1519–1539. https://doi.org/10.1175/BAMS-D-12-00149.1. [CrossRef] [Google Scholar]
- Woods TN, Eparvier FG, Harder J, Snow M. 2018. Decoupling solar variability and instrument trends using the multiple same-irradiance-level (MuSIL) analysis technique. Sol Phys 293: 76. https://doi.org/10.1007/s11207-018-1294-5. [CrossRef] [Google Scholar]
- Yeo KL, Krivova NA, Solanki SK, Glassmeier KH. 2014. Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI and SDO/HMI observations. A&A 570: A85. https://doi.org/10.1051/0004-6361/201423628. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.