Issue |
J. Space Weather Space Clim.
Volume 13, 2023
Topical Issue - Ionospheric plasma irregularities and their impact on radio systems
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/swsc/2022039 | |
Published online | 17 January 2023 |
- Aa E, Zou S, Ridley A, Zhang S, Coster AJ, Erickson PJ, Ren J. 2019. Merging of storm time midlatitude traveling ionospheric disturbances and equatorial plasma bubbles. Space Weather 17(2): 285–298. https://doi.org/10.1029/2018SW002101. [CrossRef] [Google Scholar]
- Aarons J. 1993. The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence. Space Sci Rev 63(3): 209–243. https://doi.org/10.1007/BF00750769. [CrossRef] [Google Scholar]
- Abdu MA, Bittencourt JA, Batista IS. 1981. Magnetic declination control of the equatorial F region dynamo electric field development and spread F. J Geophys Res Space Phys 86(A13): 11443–11446. https://doi.org/10.1029/JA086iA13p11443. [CrossRef] [Google Scholar]
- Abdu MA, Batista IS, Takahashi H, MacDougall J, Sobral JH, Medeiros AF, Trivedi NB. 2003. Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector. J Geophys Res Space Phys 108(A12): 1449. https://doi.org/10.1029/2002JA009721. [CrossRef] [Google Scholar]
- Basu B. 2002. On the linear theory of equatorial plasma instability: Comparison of different descriptions. J Geophys Res Space Phys 107(A8): SIA-18. https://doi.org/10.1029/2001JA000317. [Google Scholar]
- Blanc M, Richmond AD. 1980. The ionospheric disturbance dynamo. J Geophys Res Space Phys 85(A4): 1669–1686. https://doi.org/10.1029/JA085iA04p01669. [CrossRef] [Google Scholar]
- Borovsky JE, Shprits YY. 2017. Is the Dst index sufficient to define all geospace storms? J Geophys Res Lett 122(11): 11–543. https://doi.org/10.1002/2017JA024679. [Google Scholar]
- Burke WJ, de La Beaujardière O, Gentile LC, Hunton DE, Pfaff RF, Roddy PA, Wilson GR. 2009. C/NOFS observations of plasma density and electric field irregularities at post-midnight local times. Geophys Res Lett 36(18). https://doi.org/10.1029/2009GL038879. [CrossRef] [Google Scholar]
- Cherniak I, Zakharenkova I. 2022. Development of the storm-induced ionospheric irregularities at equatorial and middle latitudes during the 25–26 August 2018 geomagnetic storm. Space Weather 20(2): e2021SW002891. https://doi.org/10.1029/2021SW002891. [CrossRef] [Google Scholar]
- Conker RS, El-Arini MB, Hegarty CJ, Hsiao T. 2003. Modeling the effects of ionospheric scintillation on GPS/satellite-based augmentation system availability. Radio Sci 38(1): 1-1–1-23. https://doi.org/10.1029/2000RS002604. [CrossRef] [Google Scholar]
- Doherty P, Coster AJ, Murtagh W. 2004. Space weather effects of October–November 2003. GPS Solut 8(4): 267–271. https://doi.org/10.1007/s10291-004-0109-3. [CrossRef] [Google Scholar]
- Fejer BG, Scherliess L, De Paula ER. 1999. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J Geophys Res Space Phys 104(A9): 19859–19869. https://doi.org/10.1029/1999JA900271. [CrossRef] [Google Scholar]
- Fejer BG, Jensen JW, Su SY. 2008. Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophys Res Lett 35(20). https://doi.org/10.1029/2008GL035584. [CrossRef] [Google Scholar]
- Fejer BG. 2011. Low latitude ionospheric electrodynamics. Space Sci Rev 158(1): 145–166. https://doi.org/10.1007/s11214-010-9690-7. [CrossRef] [Google Scholar]
- Fejer BG, Navarro LA, Sazykin S, Newheart A, Milla MA, Condor P. 2021. Prompt penetration and substorm effects over Jicamarca during the September 2017 geomagnetic storm. J Geophys Res Space Phys 126(8): e2021JA029651. https://doi.org/10.1029/2021JA029651. [Google Scholar]
- Hashimoto KK, Kikuchi T, Tomizawa I, Nagatsuma T. 2017. Substorm overshielding electric field at low latitude on the nightside as observed by the HF Doppler sounder and magnetometers. J Geophys Res Space Phys 122(10): 10–851. https://doi.org/10.1002/2017JA024329. [Google Scholar]
- Hlubek N, Berdermann J, Wilken V, Gewies S, Jakowski N, Wassaie M, Damtie B. 2014. Scintillations of the GPS, GLONASS, and Galileo signals at equatorial latitude. J Space Weather Space Clim 4: A22. https://doi.org/10.1051/swsc/2014020. [CrossRef] [EDP Sciences] [Google Scholar]
- Huang CS. 2009. Eastward electric field enhancement and geomagnetic positive bay in the dayside low-latitude ionosphere caused by magnetospheric substorms during sawtooth events. Geophys Res Lett 36(18). https://doi.org/10.1029/2009GL040287. [CrossRef] [Google Scholar]
- Huang CS. 2012. Statistical analysis of dayside equatorial ionospheric electric fields and electrojet currents produced by magnetospheric substorms during sawtooth events. J Geophys Res Space Phys 117(A2). https://doi.org/10.1029/2011JA017398. [CrossRef] [Google Scholar]
- Huang CS, Hairston MR. 2015. The postsunset vertical plasma drift and its effects on the generation of equatorial plasma bubbles observed by the C/NOFS satellite. J Geophys Res Space Phys 120(3): 2263–2275. https://doi.org/10.1002/2014JA020735. [CrossRef] [Google Scholar]
- Hui D, Chakrabarty D, Sekar R, Reeves GD, Yoshikawa A, Shiokawa K. 2017. Contribution of storm time substorms to the prompt electric field disturbances in the equatorial ionosphere. J Geophys Res Space Phys 122(5): 5568–5578. https://doi.org/10.1002/2016JA023754. [CrossRef] [Google Scholar]
- Hysell DL, Burcham JD. 2002. Long term studies of equatorial spread F using the JULIA radar at Jicamarca. J Atmos Terr Phys 64(12–14): 1531–1543. https://doi.org/10.1016/S1364-6826(02)00091-3. [CrossRef] [Google Scholar]
- Kamide Y, Baumjohann W, Daglis IA, et al. 1998. Current understanding of magnetic storms: Storm-substorm relationships. J Geophys Res Space Phys 103(A8): 17705–17728. https://doi.org/10.1029/98JA01426. [CrossRef] [Google Scholar]
- Kelley MC, Haerendel G, Kappler H, Valenzuela A, Balsley BB, Carter DA, Ecklund WL, Carlson CW, Häusler B, Torbert R. 1976. Evidence for a Rayleigh–Taylor type instability and upwelling of depleted density regions during equatorial spread F. Geophys Res Lett 3(8): 448–450. https://doi.org/10.1029/GL003i008p00448. [CrossRef] [Google Scholar]
- Kelley MC, Larsen MF, La Hoz C, McClure JP. 1981. Gravity wave initiation of equatorial spread F: A case study. J Geophys Res: Space Phys 86: 9087. https://doi.org/10.1029/JA086iA11p09087. [CrossRef] [Google Scholar]
- Kikuchi T, Lühr H, Schlegel K, Tachihara H, Shinohara M, Kitamura T-I. 2000. Penetration of auroral electric fields to the equator during a substorm. J Geophys Res: Space Phys 105(A10): 23251–23261. https://doi.org/10.1029/2000JA900016. [CrossRef] [Google Scholar]
- Kikuchi T, Hashimoto KK, Nozaki K. 2008. Penetration of magnetospheric electric fields to the equator during a geomagnetic storm. J Geophys Res Space Phys 113(A6). https://doi.org/10.1029/2007JA012628. [Google Scholar]
- Li G, Ning B, Abdu MA, Yue X, Liu L, Wan W, Hu L. 2011. On the occurrence of postmidnight equatorial F region irregularities during the June solstice. J Geophys Res: Space Phys 116(A4). https://doi.org/10.1029/2010ja016056. [Google Scholar]
- Li G, Ning B, Wang C, Abdu MA, Otsuka Y, Yamamoto M, Chen J. 2018. Storm-enhanced development of postsunset equatorial plasma bubbles around the meridian 120 E/60 W on 7–8 September 2017. J Geophys Res Space Phys 123: 7985–7998. https://doi.org/10.1029/2018JA025871. [CrossRef] [Google Scholar]
- McClure JP, Hanson Hoffman J H. 1977. Plasma bubbles and irregularities in the equatorial ionosphere. J Geophys Res Space Phys 82(19): 2650–2656. https://doi.org/10.1029/JA082i019p02650. [CrossRef] [Google Scholar]
- Navarro LA, Fejer BG, Scherliess L. 2019. Equatorial disturbance dynamo vertical plasma drifts over Jicamarca: Bimonthly and solar cycle dependence. J Geophys Res Space Phys 124(6): 4833–4841. https://doi.org/10.1029/2019JA026729. [CrossRef] [Google Scholar]
- Newell PT, Gjerloev JW. 2011. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J Geophys Res Space Phys 116(A12). https://doi.org/10.1029/2011JA016779. [CrossRef] [Google Scholar]
- Nicolls MJ, Kelley MC, Vlasov MN, Sahai Y, Chau JL, Hysell DL, Lima WLC. 2006. Observations and modeling of post-midnight uplifts near the magnetic equator. Ann Geophys 24: 1317–1331. https://doi.org/10.5194/angeo-24-1317-2006. [CrossRef] [Google Scholar]
- Paul KS, Haralambous H, Oikonomou C, Paul A, Belehaki A, Ioanna T. 2018. Multi-station investigation of spread F over Europe during low to high solar activity. J Space Weather Space Clim 8: A27. https://doi.org/10.1051/swsc/2018006. [CrossRef] [EDP Sciences] [Google Scholar]
- Rentz S, Lühr H. 2008. Climatology of the cusp-related thermospheric mass density anomaly, as derived from CHAMP observations. Ann Geophys 26(9): 2807–2823. https://doi.org/10.5194/angeo-26-2807-2008. [CrossRef] [Google Scholar]
- Rout D, Pandey K, Chakrabarty D, Sekar R, Lu X. 2019. Significant electric field perturbations in low latitude ionosphere due to the passage of two consecutive ICMEs during 6–8 September 2017. J Geophys Res Space Phys 124(11): 9494–9510. https://doi.org/10.1029/2019JA027133. [CrossRef] [Google Scholar]
- Simpson F, Bahr K. 2020. Estimating the electric field response to the Halloween 2003 and September 2017 magnetic storms across Scotland using observed geomagnetic fields, magnetotelluric impedances and perturbation tensors. J Space Weather Space Clim 10: 48. https://doi.org/10.1051/swsc/2020049. [CrossRef] [EDP Sciences] [Google Scholar]
- Singh S, Johnson FS, Power RA. 1997. Gravity wave seeding of equatorial plasma bubbles. J Geophys Res Space Phys 102: 7399–7410. https://doi.org/10.1029/96JA03998. [CrossRef] [Google Scholar]
- Singh R, Sripathi S. 2020. A statistical study on the local time dependence of equatorial spread F (ESF) irregularities and their relation to low-latitude Es layers under geomagnetic storms. J Geophys Res Space Phys 125(1): e2019JA027212. https://doi.org/10.1029/2019JA027212. [CrossRef] [Google Scholar]
- Smith JM, Rodrigues FS, Fejer BG, Milla MA. 2016. Coherent and incoherent scatter radar study of the climatology and day-to-day variability of mean F region vertical drifts and equatorial spread F. J Geophys Res Space Phys 121(2). https://doi.org/10.1002/2015JA021934. [Google Scholar]
- Stolle C, Luehr H, Fejer BG. 2008. Relation between the occurrence rate of ESF and the equatorial vertical plasma drift velocity at sunset derived from global observations. Ann Geophys 26(12). https://doi.org/10.5194/angeo-26-3979-2008. [CrossRef] [Google Scholar]
- Sultan PJ. 1996. Linear theory and modeling of the Rayleigh–Taylor instability leading to the occurrence of equatorial spread F. J Geophys Res Space Phys 101(A12): 26875–26891. https://doi.org/10.1029/96JA00682. [CrossRef] [Google Scholar]
- Sunda S, Sridharan R, Vyas BM, Khekale PV, Parikh KS, Ganeshan AS. 2015. Satellite-based augmentation systems: A novel and cost-effective tool for ionospheric and space weather studies. Space Weather 13(1): 6–15. https://doi.org/10.1002/2014SW001103. [CrossRef] [Google Scholar]
- Thampi SV, Yamamoto M, Tsunoda RT, Otsuka Y, Tsugawa T, Uemoto J. 2009. First observations of large-scale wave structure and equatorial spread F using CERTO radio beacon on the C/NOFS satellite. Geophys Res Lett 36. https://doi.org/10.1029/2009GL039887. [Google Scholar]
- Wan X, Xiong C, Rodriguez-Zuluaga J, Kervalishvili GN, Stolle C, Wang H. 2018. Climatology of the occurrence rate and amplitudes of local time distinguished equatorial plasma depletions observed by Swarm satellite. J Geophys Res Space Phys 123: 3014–3026. https://doi.org/10.1002/2017JA025072. [CrossRef] [Google Scholar]
- Wan X, Xiong C, Wang H, Zhang K, Zheng Z, He Y, Yu L. 2019. A statistical study on the climatology of the Equatorial Plasma Depletions occurrence at topside ionosphere during geomagnetic disturbed periods. J Geophys Res Space Phys 124. https://doi.org/10.1029/2019JA026926. [Google Scholar]
- Watanabe S, Oya H. 2010. Occurrence characteristics of low latitude ionosphere irregularities observed by impedance probe on board the hinotori satellite. Earth Planets Space 38(2): 125–149. https://doi.org/10.5636/jgg.38.125. [Google Scholar]
- Xiong C, Park J, Luehr H, Stolle C, Ma SY. 2010. Comparing plasma bubble occurrence rates at champ and grace altitudes during high and low solar activity. Ann Geophys 28(9): 1647–1658. https://doi.org/10.5194/angeo-28-1647-2010. [CrossRef] [Google Scholar]
- Xiong C, Lühr H, Fejer BG. 2015. Global features of the disturbance winds during storm time deduced from CHAMP observations. J Geophys Res Space Phys 120(6): 5137–5150. https://doi.org/10.1002/2015JA021302. [CrossRef] [Google Scholar]
- Xiong C, Stolle C, Lühr H. 2016a. The swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities. Space Weather 14(8): 563–577. https://doi.org/10.1002/2016SW001439. [CrossRef] [Google Scholar]
- Xiong C, Lühr H, Fejer BG. 2016b. The response of equatorial electrojet, vertical plasma drift, and thermospheric zonal wind to enhanced solar wind input. J Geophys Res Space Phys 6: 5653–5663. https://doi.org/10.1002/2015JA022133. [CrossRef] [Google Scholar]
- Zhan W, Rodrigues FS, Milla MA. 2018a. On the genesis of post-midnight equatorial spread F: Results for the American/Peruvian sector. Geophys Res Lett 45(15): 7354–7361. https://doi.org/10.1029/2018GL078822. [CrossRef] [Google Scholar]
- Zhan W, Rodrigues FS. 2018b. June solstice equatorial spread F in the American sector: A numerical assessment of linear stability aided by incoherent scatter radar measurements. J Geophys Res: Space Phys 123(1): 755–767. https://doi.org/10.1002/2017JA024969. [CrossRef] [Google Scholar]
- Zhang K, Wang H, Liu J, Zheng Z, He Y, Gao J, Zhong Y. 2021a. Dynamics of the tongue of ionizations during the geomagnetic storm on September 7, 2015. J Geophys Res Space Phys 126(6): e2020JA029038. https://doi.org/10.1029/2020JA029038. [Google Scholar]
- Zhang K, Wang H, Liu J, Zheng Z, He Y, Gao J, Zhong Y. 2021b. Effects of subauroral polarization streams on the equatorial electrojet during the geomagnetic storm on June 1, 2013. J Geophys Res Space Phys 126(10): e2021JA029681. https://doi.org/10.1029/2021JA029681. [Google Scholar]
- Zhang K, Wang H, Wang W. 2022. Local time variations of the equatorial electrojet in simultaneous response to subauroral polarization streams during quiet time. Geophys Res Lett 49(7): e2022GL098623. https://doi.org/10.1029/2022GL098623. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.