Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/swsc/2023008 | |
Published online | 24 April 2023 |
- Altschuler MD, Newkirk G. 1969. Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Sol Phys 9: 131–149. https://doi.org/10.1007/BF00145734. [CrossRef] [Google Scholar]
- Antiochos SK, Mikić Z, Titov VS, Lionello R, Linker JA. 2011. A model for the sources of the slow solar wind. Astrophys J 731(2): 112. https://doi.org/10.1088/0004-637X/731/2/112. [CrossRef] [Google Scholar]
- Arge CN, Henney CJ, Hernandez IG, Toussaint WA, Koller J, Godinez HC. 2013. Modeling the corona and solar wind using ADAPT maps that include far-side observations. In: Solar Wind 13, vol. 1539 of American Institute of Physics Conference Series, Zank GP, Borovsky J, Bruno R, Cirtain J, Cranmer S, Elliott H, Giacalone J, Gonzalez W, Li G, Marsch E, Moebius E, Pogorelov N, Spann J, Verkhoglyadova O, (Eds.), pp. 11–14. https://doi.org/10.1063/1.4810977. https://ui.adsabs.harvard.edu/abs/2013AIPC.1539...11A/abstract. [Google Scholar]
- Arge CN, Henney CJ, Koller J, Compeau CR, Young S, MacKenzie D, Fay A, Harvey JW. 2010. Air Force Data Assimilative Photospheric Flux Transport (ADAPT) Model. In: Twelfth International Solar Wind Conference, vol. 1216 of American Institute of Physics Conference Series, Maksimovic M, Issautier K, Meyer-Vernet N, Moncuquet M, Pantellini F, (Eds.), pp. 343–346. https://doi.org/10.1063/1.3395870. https://ui.adsabs.harvard.edu/abs/2010AIPC.1216..343A/abstract. [Google Scholar]
- Arge CN, Odstrcil D, Pizzo VJ, Mayer LR. 2003. Improved method for specifying solar wind speed near the sun. In: Solar Wind Ten, vol. 679 of American Institute of Physics Conference Series, Velli M, Bruno R, Malara F, Bucci B, (Eds.), pp. 190–193. https://doi.org/10.1063/1.1618574. https://ui.adsabs.harvard.edu/abs/2003AIPC..679..190A/abstract. [Google Scholar]
- Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res 105: 10465–10480. https://doi.org/10.1029/1999JA000262. [CrossRef] [Google Scholar]
- Badman ST, Bale SD, Rouillard AP, Bowen TA, Bonnell JW, Goetz K, Harvey PR, MacDowall RJ, Malaspina DM, Pulupa M. 2021. Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU. A&A 650: A18. https://doi.org/10.1051/0004-6361/202039407. [CrossRef] [EDP Sciences] [Google Scholar]
- Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, et al. 1995. The large angle spectroscopic coronagraph (LASCO). Sol Phys 162(1–2): 357–402. https://doi.org/10.1007/BF00733434. [CrossRef] [Google Scholar]
- Bunting KA, Morgan H. 2022. An inner boundary condition for solar wind models based on coronal density. J Space Weather Space Clim 12: 30. https://doi.org/10.1051/swsc/2022026. https://ui.adsabs.harvard.edu/abs/2022JSWSC.12..30B. [CrossRef] [EDP Sciences] [Google Scholar]
- Démoulin P, Priest ER, Lonie DP. 1996. Three-dimensional magnetic reconnection without null points 2. Application to twisted flux tubes. J Geophys Res 101(A4): 7631–7646. https://doi.org/10.1029/95JA03558. [CrossRef] [Google Scholar]
- Gosling JT, Pizzo VJ. 1999. Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci Rev 89: 21–52. https://doi.org/10.1023/A:1005291711900. [CrossRef] [Google Scholar]
- Hellinger P, Matteini L, Štverák Š, Trávnček PM, Marsch E. 2011. Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited. J Geophys Res Space Phys 116(A9): A09105. https://doi.org/10.1029/2011JA016674. [Google Scholar]
- Kasper JC, Abiad R, Austin G, Balat-Pichelin M, Bale SD, et al. 2016. Solar wind electrons alphas and protons (SWEAP) investigation: design of the solar wind and coronal plasma instrument suite for solar probe plus. Space Sci Rev 204(1): 131–186. https://doi.org/10.1007/s11214-015-0206-3. [CrossRef] [Google Scholar]
- Keppens R, Goedbloed JP. 1999. Numerical simulations of stellar winds: polytropic models. A&A 343: 251–260. [Google Scholar]
- Linker JA, Caplan RM, Downs C, Riley P, Mikic Z, et al. 2017. The open flux problem. Astrophys J 848: 70. https://doi.org/10.3847/1538-4357/aa8a70. [CrossRef] [Google Scholar]
- Matt SP, MacGregor KB, Pinsonneault MH, Greene TP. 2012. Magnetic braking formulation for sun-like stars: dependence on dipole field strength and rotation rate. Astrophys J Lett 754(2): L26. https://doi.org/10.1088/2041-8205/754/2/L26. [CrossRef] [Google Scholar]
- Mignone A, Bodo G, Massaglia S, Matsakos T, Tesileanu O, Zanni C, Ferrari A. 2007. PLUTO: a numerical code for computational astrophysics. Astrophys J Suppl 170: 228–242. https://doi.org/10.1086/513316. [CrossRef] [Google Scholar]
- Owens MJ. 2018. Time-window approaches to space-weather forecast metrics: a solar wind case study. Space Weather 16(11): 1847–1861. https://doi.org/10.1029/2018SW002059. [CrossRef] [Google Scholar]
- Parenti S, Réville V, Brun AS, Pinto RF, Auchère F, Buchlin É, Perri B, Strugarek A. 2022. Validation of a wave heated 3D MHD coronal-wind model using polarized brightness and EUV observations. Astrophys J 929(1): 75. https://doi.org/10.3847/1538-4357/ac56da. [CrossRef] [Google Scholar]
- Pinto RF, Rouillard AP. 2017. A multiple flux-tube solar wind model. Astrophys J 838: 89. https://doi.org/10.3847/1538-4357/aa6398. [CrossRef] [Google Scholar]
- Poirier N, Kouloumvakos A, Rouillard AP, Pinto RF, Vourlidas A, et al. 2020. Detailed imaging of coronal rays with the Parker solar probe. Astrophys J Suppl 246(2): 60. https://doi.org/10.3847/1538-4365/ab6324. [CrossRef] [Google Scholar]
- Poirier N, Rouillard AP, Kouloumvakos A, Przybylak A, Fargette N, Pobeda R, Réville V, Pinto RF, Indurain M, Alexandre M. 2021. Exploiting white-light observations to improve estimates of magnetic connectivity. Front Astron Space Sci 8: 84. https://doi.org/10.3389/fspas.2021.684734. [CrossRef] [Google Scholar]
- Priest ER, Démoulin P. 1995. Three-dimensional magnetic reconnection without null points. 1. Basic theory of magnetic flipping. J Geophys Res 100(A12): 23443–23464. https://doi.org/10.1029/95JA02740. [CrossRef] [Google Scholar]
- Reiss MA, Temmer M, Veronig AM, Nikolic L, Vennerstrom S, Schöngassner F, Hofmeister SJ. 2016. Verification of high-speed solar wind stream forecasts using operational solar wind models. Space Weather 14(7): 495–510. https://doi.org/10.1002/2016SW001390. [NASA ADS] [CrossRef] [Google Scholar]
- Réville V, Brun AS. 2017. Global solar magnetic field organization in the outer corona: influence on the solar wind speed and mass flux over the cycle. Astrophys J 850: 45. https://doi.org/10.3847/1538-4357/aa9218. [CrossRef] [Google Scholar]
- Réville V, Brun AS, Matt SP, Strugarek A, Pinto RF. 2015. The effect of magnetic topology on thermally driven wind: toward a general formulation of the braking law. Astrophys J 798: 116. https://doi.org/10.1088/0004-637X/798/2/116. [CrossRef] [Google Scholar]
- Réville V, Fargette N, Rouillard AP, Lavraud B, Velli M, et al. 2022. Flux rope and dynamics of the heliospheric current sheet. Study of the Parker solar probe and solar orbiter conjunction of June 2020. A&A 659: A110. https://doi.org/10.1051/0004-6361/202142381. [CrossRef] [EDP Sciences] [Google Scholar]
- Réville V, Velli M, Panasenco O, Tenerani A, Shi C, et al. 2020a. The role of Alfvén wave dynamics on the large-scale properties of the solar wind: comparing an MHD simulation with Parker solar probe E1 data. Astrophys J Suppl 246(2): 24. https://doi.org/10.3847/1538-4365/ab4fef. [CrossRef] [Google Scholar]
- Réville V, Velli M, Rouillard AP, Lavraud B, Tenerani A, Shi C, Strugarek A. 2020b. Tearing instability and periodic density perturbations in the slow solar wind. Astrophys J Lett 895(1): L20. https://doi.org/10.3847/2041-8213/ab911d. [CrossRef] [Google Scholar]
- Riley P, Ben-Nun M. 2021. On the sources and sizes of uncertainty in predicting the arrival time of interplanetary coronal mass ejections using global MHD models. Space Weather 19(6): e02775. https://doi.org/10.1029/2021SW002775. [CrossRef] [Google Scholar]
- Riley P, Linker JA, Mikić Z. 2001. An empirically-driven global MHD model of the solar corona and inner heliosphere. J Geophys Res 106(A8): 15889–15902. https://doi.org/10.1029/2000JA000121. [CrossRef] [Google Scholar]
- Riley P, Linker JA, Mikic Z, Caplan RM, Downs C, Thumm J-L. 2019. Can an unobserved concentration of magnetic flux above the poles of the sun resolve the open flux problem? Astrophys J 884(1): 18. https://doi.org/10.3847/1538-4357/ab3a98. [CrossRef] [Google Scholar]
- Sakurai T. 1985. Magnetic stellar winds – A 2-D generalization of the Weber-Davis model. A&A 152: 121–129. [Google Scholar]
- Samara E, Laperre B, Kieokaew R, Temmer M, Verbeke C, Rodriguez L, Magdalenić J, Poedts S. 2022. Dynamic time warping as a means of assessing solar wind time series. Astrophys J 927(2): 187. https://doi.org/10.3847/1538-4357/ac4af6. [CrossRef] [Google Scholar]
- Samara E, Pinto RF, Magdalenić J, Wijsen N, Jerčić V, Scolini C, Jebaraj IC, Rodriguez L, Poedts S. 2021. Implementing the MULTI-VP coronal model in EUHFORIA: test case results and comparisons with the WSA coronal model. A&A 648: A35. https://doi.org/10.1051/0004-6361/202039325. [CrossRef] [EDP Sciences] [Google Scholar]
- Schatten KH, Wilcox JM, Ness NF. 1969. A model of interplanetary and coronal magnetic fields. Sol Phys 6: 442–455. https://doi.org/10.1007/BF00146478. [CrossRef] [Google Scholar]
- Smith EJ. 2011. Solar cycle evolution of the heliospheric magnetic field: the Ulysses legacy. J Atmos Sol Terr Phys 73: 277–289. https://doi.org/10.1016/j.jastp.2010.03.019. [CrossRef] [Google Scholar]
- Stepan S, Travnicek PM, Hellinger P. 2015. Electron energetics in the expanding solar wind via Helios observations. J Geophys Res Space Phys 120(10): 8177–8193. https://doi.org/10.1002/2015JA021368. [CrossRef] [Google Scholar]
- Taylor KE. 2001. Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7): 7183–7192. https://doi.org/10.1029/2000JD900719. [CrossRef] [Google Scholar]
- Titov VS. 2007. Generalized squashing factors for covariant description of magnetic connectivity in the solar corona. Astrophys J 660(1): 863–873. https://doi.org/10.1086/512671. [CrossRef] [Google Scholar]
- Titov VS, Démoulin P. 1999. Basic topology of twisted magnetic configurations in solar flares. A&A 351: 707–720. [Google Scholar]
- Verniero JL, Chandran BDG, Larson DE, Paulson K, Alterman BL, et al. 2022. Strong perpendicular velocity-space diffusion in proton beams observed by Parker solar probe. Astrophys J 924(2): 112. https://doi.org/10.3847/1538-4357/ac36d5. [CrossRef] [Google Scholar]
- Virtanen I, Mursula K. 2017. Photospheric and coronal magnetic fields in six magnetographs. II. Harmonic scaling of field intensities. A&A 604: A7. https://doi.org/10.1051/0004-6361/201730863. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wang Y-M. 2010. On the Relative Constancy of the solar wind mass flux at 1 AU. Astrophys J Lett 715: L121–L127. https://doi.org/10.1088/2041-8205/715/2/L121. [CrossRef] [Google Scholar]
- Wang YM, Ulrich RK, Harvey JW. 2022. Magnetograph saturation and the open flux problem. Astrophys J 926(2): 113. https://doi.org/10.3847/1538-4357/ac4491. [CrossRef] [Google Scholar]
- Yermolaev YI, Nikolaeva NS, Lodkina IG, Yermolaev MY. 2012. Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J Geophys Res Space Phys 117: A00L07. https://doi.org/10.1029/2011JA017139. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.