Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
|
|
---|---|---|
Article Number | 27 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2024024 | |
Published online | 11 October 2024 |
- Appleton E. 1947. The ionosphere, Nobel Lecture. Available at https://www.nobelprize.org/uploads/2017/01/appleton-lecture-new.pdf (accessed: 22nd September 2023). [Google Scholar]
- Appleton E, Naismith R. 1947. The radio detection of meteor trails and allied phenomena. Proc Phys Soc 59: 461. https://doi.org/10.1088/0959-5309/59/3/313. [CrossRef] [Google Scholar]
- Collaboration Astropy, Robitaille TP, Tollerud EJ, Greenfield P, Droettboom M, et al. 2013. Astropy: a community Python package for astronomy. A&A 558: A33. https://doi.org/10.1051/0004-6361/201322068. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Beser K, Mevius M, Grzesiak M, Rothkaehl H. 2022. Detection of periodic disturbances in LOFAR calibration solutions. Remote Sens 14(7): 1719. https://doi.org/10.3390/rs14071719. [CrossRef] [Google Scholar]
- Boyde B, Wood A, Dorrian G, Fallows RA, Themens D, et al. 2022. Lensing from small-scale travelling ionospheric disturbances observed using LOFAR. J Space Weather Space Clim 12: 34. https://doi.org/10.1051/swsc/2022030. [CrossRef] [EDP Sciences] [Google Scholar]
- Boyde B, Wood AG, Dorrian GD, de Gasperin F, Sweijen F, Mevius M, Beser K, Themens D. 2024. Wavelet analysis of differential TEC measurements obtained using LOFAR. Radio Sci 59: e2023RS007871. https://doi.org/10.1029/2023RS007871. [CrossRef] [Google Scholar]
- Brisken WF, Macquart J-P, Gao JJ, Rickett BJ, Coles WA, Deller AT, Tingay SJ, West CJ. 2010. 100 μas resolution VLBI imaging of anisotropic interstellar scattering toward pulsar B0834+06. Astrophys J 708: 232–243. https://doi.org/0004-637X/708/1/232. [CrossRef] [Google Scholar]
- Buchau J, Reinisch BW. 1991. Electron density structures in the polar F region. Adv Space Res 11(10): 29–37. https://doi.org/10.1016/0273-1177(91)90317-D. [CrossRef] [Google Scholar]
- Burston R, Mitchell C, Astin I. 2016. Polar cap plasma patch primary linear instability growth rates compared. J Geophys Res Space Phys 121: 3439–3451. https://doi.org/10.1002/2015JA021895. [CrossRef] [Google Scholar]
- Carrano C, Retterer J, Groves K, Crowley G, Duly T, Hunton D. 2020. Wave-optics analysis of HF propagation through traveling ionospheric disturbances and developing plasma bubbles. In: XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, Rome, Italy, 29 August–05 September https://doi.org/10.23919/URSIGASS49373.2020.9232348. [Google Scholar]
- Cherniak I, Zakharenkova I. 2016. First observations of super plasma bubbles in Europe. Geophys Res Lett 43(21): 11–137. https://doi.org/10.1002/2016GL071421. [CrossRef] [Google Scholar]
- Clegg AW, Fey AL, Lazio TJW. 1998. The Gaussian plasma lens in astrophysics: refraction. Astrophys J 496: 253–266. https://doi.org/10.1086/305344. [CrossRef] [Google Scholar]
- Cordes JM, Rickett BJ, Stinebring DR, Coles WA. 2006. Theory of parabolic arcs in interstellar scintillation spectra. Astrophys J 637: 346. https://doi.org/10.1086/498332. [CrossRef] [Google Scholar]
- Cosgrove RB, Tsunoda RT, Fukao S, Yamamoto M. 2004. Coupling of the Perkins instability and the sporadic E layer instability derived from physical arguments. J Geophys Res 109: A06301. https://doi.org/10.1029/2003JA010295. [Google Scholar]
- de Gasperin F, Mevius M, Rafferty DA, Intema HT, Fallows RA. 2018. The effect of the ionosphere on ultra-low-frequency radio-interferometric observations. A&A 615: A179. https://doi.org/10.1051/0004-6361/201833012. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- de Gasperin F, Vink J, McKean JP, Asgekar A, Avruch I, et al. 2020. Cassiopeia A, Cygnus A, Taurus A, and Virgo A at ultra-low radio frequencies. A&A 635. http://doi.org/10.1051/0004-6361/201936844. [Google Scholar]
- Didebulidze GG, Dalakishvili G, Lomidze L, Matiashvili G. 2015. Formation of sporadic-E (Es) layers under the influence of AGWs evolving in a horizontal shear flow. J Atmos Sol-Terr Phy 136: 163–173. https://doi.org/10.1016/j.jastp.2015.09.012. [CrossRef] [Google Scholar]
- Dorrian G, Fallows RA, Wood A, Themens DR, Boyde B, Krankowski A, Bisi M, Dąbrowski B, Vocks C. 2023. LOFAR observations of substructure within a traveling ionospheric disturbance at mid-latitude. Space Weather 21: e2022SW003198. https://doi.org/10.1029/2022SW003198. [CrossRef] [Google Scholar]
- Dueño B. 1956. Low-angle fluctuations of the radio-star Cassiopeia as observed at Ithaca, N.Y., and its relation to the incidence of sporadic-E. J Geophys Res 61(3): 535–540. https://doi.org/10.1029/JZ061i003p00535. [CrossRef] [Google Scholar]
- Fallows RA, Bisi MM, Forte B, Ulich T, Konovalenko AA, Mann G, Vocks C. 2016. Separating nightside interplanetary and ionospheric scintillation with LOFAR. Astrophys J Lett 828: L7. https://doi.org/10.3847/2041-8205/828/1/L7. [CrossRef] [Google Scholar]
- Fallows RA, Coles WA, McKay-Bukowski D, Vierinen J, Virtanen II, et al. 2014. Broadband meter-wavelength observations of ionospheric scintillation. J Geophys Res Space Phys 119: 10544–10560. https://doi.org/10.1002/2014JA020406. [CrossRef] [Google Scholar]
- Fallows RA, Forte B, Astin I, Allbrook T, Arnold A, et al. 2020. A LOFAR observation of ionospheric scintillation from simultaneous medium- and large-scale travelling ionospheric disturbances. J Space Weather Space Clim 10: 10. https://doi.org/10.1051/swsc/2020010. [CrossRef] [EDP Sciences] [Google Scholar]
- Gopalswamy N, Mäkelä P, Yashiro S. 2019. A catalog of type II radio bursts observed by Wind/WAVES and their statistical properties. Sun Geosphere 14: 111–121. https://doi.org/10.31401/SunGeo.2019.02.03. [NASA ADS] [Google Scholar]
- Hargreaves JK. 1992. The solar-terrestrial environment, Cambridge atmospheric and space science series. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511628924. [Google Scholar]
- Hines CO. 1960. Internal gravity wave and ionospheric heights. Can J Phys 38: 1441–1481. https://doi.org/10.1139/p60-150. [CrossRef] [Google Scholar]
- Hocke K, Igarashi K. 2003. Wave-optical simulation of the oblique HF radio field. Radio Sci 38: 1039. https://doi.org/10.1029/2002RS002691. [Google Scholar]
- Hocke K, Schlegel K. 1996. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann Geophys 14: 917–940. https://doi.org/10.1007/s00585-996-0917-6. [Google Scholar]
- Jansky KG. 1932. Directional studies of atmospherics at high frequencies. In: Classics in radio astronomy. Studies in the history of modern science, Sullivan WT (Ed.), Springer, Dordrecht, pp. 10–22. https://doi.org/10.1007/978-94-009-7752-5_1. [Google Scholar]
- Jansky KG. 1933. New radio waves traced to centre of the Milky Way; mysterious static, New York Times, 5th May 1933, p. 1. Available at https://www.nytimes.com/1933/05/05/archives/new-radio-waves-traced-to-centre-of-the-milky-way-mysterious-static.html?searchResultPosition=2. [Google Scholar]
- Kerr F, Shain C, Higgins C. 1949. Moon echoes and penetration of the ionosphere. Nature 163: 310–313. https://doi.org/10.1038/163310a0. [CrossRef] [Google Scholar]
- Keskinen MJ, Ossakow SL. 1983. Theories of high-latitude ionospheric irregularities: a review. Radio Sci 18(6): 1077–1091. https://doi.org/10.1029/RS018i006p01077. [CrossRef] [Google Scholar]
- Koval A, Chen Y, Stanislavsky A, Kashcheyev A, Zhang QH. 2018. Simulation of focusing effect of traveling ionospheric disturbances on meter-decameter solar dynamic spectra. J Geophys Res: Space Phys 123: 8940–8950. https://doi.org/10.1029/2018JA025584. [CrossRef] [Google Scholar]
- Koval A, Chen Y, Stanislavsky A, Zhang QH. 2017. Traveling ionospheric disturbances as huge natural lenses: solar radio emission focusing effect. J Geophys Res Space Phys 122: 9092–9101. https://doi.org/10.1002/2017JA024080. [CrossRef] [Google Scholar]
- Koval A, Chen Y, Tsugawa T, Otsuka Y, Shinbori A, et al. 2019. Direct observations of traveling ionospheric disturbances as focusers of solar radiation: spectral caustics. Astrophys J 877: 98. https://doi.org/10.3847/1538-4357/ab1b52. [CrossRef] [Google Scholar]
- Little C, Lovell A. 1950. Origin of the fluctuations in the intensity of radio waves from galactic sources: Jodrell Bank observations. Nature 165: 423–424. https://doi.org/10.1038/165423a0. [CrossRef] [Google Scholar]
- Maruyama T. 1991. Observations of quasi-periodic scintillations and their possible relation to the dynamics of Es plasma blobs. Radio Sci 26(3): 691–700. https://doi.org/10.1029/91RS00357. [CrossRef] [Google Scholar]
- Maruyama T. 1995. Shapes of irregularities in the sporadic E layer producing quasi-periodic scintillations. Radio Sci 30(3): 581–590. https://doi.org/10.1029/95RS00830. [CrossRef] [Google Scholar]
- McKay-Bukowski D, Vierinen J, Virtanen I, Fallows RA, Postila M, et al. 2014. KAIRA: The Kilpisjärvi Atmospheric Imaging Receiver Array – System overview and first results. IEEE Trans Geosci Remote Sens 53(3): 1440–1451. http:/doi.org/10.1109/TGRS.2014.2342252. [Google Scholar]
- Mevius M, van der Tol S, Pandey VN, Vedantham HK, Brentjens MA, et al. 2016. Probing ionospheric structures using the LOFAR radio telescope. Radio Sci 51: 927–941. https://doi.org/10.1002/2016RS006028. [CrossRef] [Google Scholar]
- Meyer-Vernet N. 1980. On a day-time ionospheric effect on some radio intensity measurements and interferometry. A&A 84: 142–147. Available at https://articles.adsabs.harvard.edu/pdf/1980A%26A....84..142M. [Google Scholar]
- Pancheva D, Haldoupis C, Meek CE, Manson AH, Mitchell NG. 2003. Evidence of a role for modulated atmospheric tides in the dependence of sporadic E layers on planetary waves. J Geophys Res 108: 1176. https://doi.org/10.1029/2002JA009788. [CrossRef] [Google Scholar]
- Papitashvili NE, King JH. 2020. “OMNI 5-min Data” [Data set], NASA Space Physics Data Facility. Available at https://doi.org/10.48322/gbpg-5r77 (accessed on 10th July 2023). [Google Scholar]
- Payne-Scott R, McCready LL. 1948. Ionospheric effects noted during dawn observations on solar noise. Terr Magn Atmos Electr 53(4): 429–432. https://doi.org/10.1029/TE053i004p00429. [CrossRef] [Google Scholar]
- Perkins F. 1973. Spread F and ionospheric currents. J Geophys Res 78(1): 218–226. https://doi.org/10.1029/JA078i001p00218. [CrossRef] [Google Scholar]
- Price-Whelan AM, Sipöcz BM, Günther HM, Lim PL, Crawford SM, et al. 2018. The astropy project: building an open-science project and status of the v2.0 core package. Astron J 156: 123. https://doi.org/10.3847/1538-3881/aabc4f. [CrossRef] [Google Scholar]
- Reinisch BW, Galkin IA. 2011. Global ionospheric radio observatory (GIRO). Earth Planets Space 63(4): 377–381. https://doi.org/10.5047/eps.2011.03.001. [CrossRef] [Google Scholar]
- Stinebring DR, McLaughlin MA, Cordes JM, Becker KM, Espinoza Goodman JE, Kramer MA, Sheckard JL, Smith CT. 2001. Faint scattering around pulsars: probing the interstellar medium on solar system size scales. Astrophys J 549(1): 97. http://doi.org/10.1086/319133. [Google Scholar]
- Tapping KF. 2013. The 10.7 cm solar radio flux (F10.7). Space Weather 11: 394–406. https://doi.org/10.1002/swe.20064. [CrossRef] [Google Scholar]
- Thomas JA, Smith EK. 1959. A survey of the present knowledge of sporadic-E ionization. J Atmos Sol-Terr Phys 13: 295–314. [CrossRef] [Google Scholar]
- Tsai LC, Shin-Yi S, Chao-Han L, Harald S, Wichert J, Mahdi Alizadeh M. 2018. Global morphology of ionospheric sporadic E layer from the FormoSat-3/COSMIC GPS radio occultation experiment. GPS Solut 22: 118. https://doi.org/10.1007/s1029-018-0782-2. [CrossRef] [Google Scholar]
- Tsugawa T, Saito A, Otsuka Y. 2004. A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan. J Geophys Res 109: A06302. https://doi.org/10.1029/2003JA010302. [CrossRef] [Google Scholar]
- van Haarlem MP, Wise MW, Gunst A, Heald G, McKean JP, et al. 2013. LOFAR: the low-frequency array. A&A 556: A2. https://doi.org/10.1051/0004-6361/201220873. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- van Velthoven PFJ. 1990. Medium scale irregularities in the ionospheric electron content, PhD thesis, Eindhoven University, The Netherlands. [Google Scholar]
- Walker MA, Melrose DB, Stinebring DR, Zhang CM. 2004. Interpretation of parabolic arcs in pulsar secondary spectra. Mon Not R Astron Soc 354: 43–54. https://doi.org/10.1111/j.1365-2966.2004.08159.x. [CrossRef] [Google Scholar]
- Waszewski A, Morgan J, Jordan CH. 2022. A measurement of small-scale features using ionospheric scintillation. Comparison with refractive shift measurements. Publ Astron Soc Aust 39: e036. https://doi.org/10.1017/pasa.2022.33. [CrossRef] [Google Scholar]
- Weber EJ, Klobuchar JA, Buchau J, Carlson HC Jr., Livingston RC, de la Beaujadiere O, McCready M, Moore JG, Bishop GJ. 1986. Polar cap F layer patches: structure and dynamics. J Geophys Res 91: 12121–12129. https://doi.org/10.1029/JA091iA11p12121. [CrossRef] [Google Scholar]
- Weiß J. 2016. History of the Juliusruh ionospheric observatory on Rügen. Hist Geo Space Sci 7: 1–22. https://doi.org/10.5194/hgss-7-1-2016. [CrossRef] [Google Scholar]
- Whitehead JD. 1970. Production and prediction of sporadic E. Rev Geophys 8: 65–144. https://doi.org/10.1029/RG008i001p00065. [CrossRef] [Google Scholar]
- Wu DL, Ao CO, Hajj GA, de La Torre Juarez M, Mannucci AJ. 2005. Sporadic E morphology from GPS-CHAMP radio occultation. J Geophys Res Space Phys 110: A01306. https://doi.org/10.1029/2004JA010701. [Google Scholar]
- Yatawatta S, de Bruyn AG, Brentjens MA, Labropoulos P, Pandey VN, et al. 2013. Initial deep LOFAR observations of epoch of reionization windows – I. The north celestial pole. A&A 550: A136. https://doi.org/10.1051/0004-6361/201220874. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Zhou Q, Mathews JD. 2006. On the physical explanation of the Perkins instability. J Geophys Res 111: A12309. https://doi.org/10.1029/2006JA011696. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.