The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
Investigation of double geomagnetic storms on 3 and 4 February 2022 using machine learning approach
Mostafa Hegy, Essam Ghamry, Ibrahim El-Hamaly, Sami Abd El Nabi, Ahmad Helaly, Adel Fathy and T.A. Nahool NRIAG Journal of Astronomy and Geophysics 14(1) 1 (2025) https://doi.org/10.1080/20909977.2025.2458944
SWAN: A multihead autoregressive attention model for solar wind speed forecasting
Wavelet Coherence Analysis of Plasma Beta, Alfven Mach Number, and Magnetosonic Mach Number during Different Geomagnetic Storms
Ashutosh Giri, Binod Adhikari, Rabin Baral, Chali Idosa Uga, Andres Calabia and A. Kilcik The Scientific World Journal 2024 1 (2024) https://doi.org/10.1155/2024/1335844
Prediction of the SYM‐H Index Using a Bayesian Deep Learning Method With Uncertainty Quantification
Yasser Abduallah, Khalid A. Alobaid, Jason T. L. Wang, Haimin Wang, Vania K. Jordanova, Vasyl Yurchyshyn, Huseyin Cavus and Ju Jing Space Weather 22(2) (2024) https://doi.org/10.1029/2023SW003824
Classifying and bounding geomagnetic storms based on the SYM-H and ASY-H indices
Analytical Approach to SYM-H based Geomagnetic Storm Classifications using Statistical Features Extraction
Zatul Iffah Abd Latiff, Muhammad Asraf Hairuddin, Aznilinda Zainuddin, Nur Dalila Khirul Ashar and Mohamad Huzaimy Jusoh Journal of Physics: Conference Series 2915(1) 012010 (2024) https://doi.org/10.1088/1742-6596/2915/1/012010
Solar Wind‐Magnetosphere Coupling Efficiency and Its Dependence on Solar Activity During Geomagnetic Storms of 23–24 Solar Cycles
V. M. Ashna, Ankush Bhaskar, G. Manju and R. Sini Journal of Geophysical Research: Space Physics 129(8) (2024) https://doi.org/10.1029/2023JA031687
Comment on “Prediction of the SYM‐H Index Using a Bayesian Deep Learning Method With Uncertainty Quantification” by Abduallah et al. (2024)
Review of Geomagnetically Induced Current Proxies in Mid-Latitude European Countries
Agnieszka Gil, Monika Berendt-Marchel, Renata Modzelewska, Agnieszka Siluszyk, Marek Siluszyk, Anna Wawrzaszek and Anna Wawrzynczak Energies 16(21) 7406 (2023) https://doi.org/10.3390/en16217406
Database development for intellectual system for research of space weather parameters
Danylo Ivantyshyn and Yevhen Burov Vìsnik Nacìonalʹnogo unìversitetu "Lʹvìvsʹka polìtehnìka". Serìâ Ìnformacìjnì sistemi ta merežì 13 329 (2023) https://doi.org/10.23939/sisn2023.13.329
Forecasting Geomagnetic Storm Disturbances and Their Uncertainties Using Deep Learning
D. Conde, F. L. Castillo, C. Escobar, C. García, J. E. García, V. Sanz, B. Zaldívar, J. J. Curto, S. Marsal and J. M. Torta Space Weather 21(11) (2023) https://doi.org/10.1029/2023SW003474
Neural Networks for Operational SYM‐H Forecasting Using Attention and SWICS Plasma Features
Modeling Radiation Belt Electrons With Information Theory Informed Neural Networks
Simon Wing, Drew L. Turner, Aleksandr Y. Ukhorskiy, Jay R. Johnson, Thomas Sotirelis, Romina Nikoukar and Giuseppe Romeo Space Weather 20(8) (2022) https://doi.org/10.1029/2022SW003090
Forecasting GICs and Geoelectric Fields From Solar Wind Data Using LSTMs: Application in Austria
R. L. Bailey, R. Leonhardt, C. Möstl, C. Beggan, M. A. Reiss, A. Bhaskar and A. J. Weiss Space Weather 20(3) (2022) https://doi.org/10.1029/2021SW002907
Can We Estimate the Intensities of Great Geomagnetic Storms (ΔSYM-H ≤ −200 nT) with the Burton Equation or the O’Brien and McPherron Equation?
New Findings From Explainable SYM‐H Forecasting Using Gradient Boosting Machines
Daniel Iong, Yang Chen, Gabor Toth, Shasha Zou, Tuija Pulkkinen, Jiaen Ren, Enrico Camporeale and Tamas Gombosi Space Weather 20(8) (2022) https://doi.org/10.1029/2021SW002928
Forecasting the Probability of Large Rates of Change of the Geomagnetic Field in the UK: Timescales, Horizons, and Thresholds
A. W. Smith, C. Forsyth, I. J. Rae, T. M. Garton, T. Bloch, C. M. Jackman and M. Bakrania Space Weather 19(9) (2021) https://doi.org/10.1029/2021SW002788
Operational Dst index prediction model based on combination of artificial neural network and empirical model
Forecasting SYM‐H Index: A Comparison Between Long Short‐Term Memory and Convolutional Neural Networks
F. Siciliano, G. Consolini, R. Tozzi, M. Gentili, F. Giannattasio and P. De Michelis Space Weather 19(2) (2021) https://doi.org/10.1029/2020SW002589
RMSE is not enough: Guidelines to robust data-model comparisons for magnetospheric physics
Michael W. Liemohn, Alexander D. Shane, Abigail R. Azari, et al. Journal of Atmospheric and Solar-Terrestrial Physics 218 105624 (2021) https://doi.org/10.1016/j.jastp.2021.105624
Deep Neural Networks With Convolutional and LSTM Layers for SYM‐H and ASY‐H Forecasting