J. Space Weather Space Clim.
Volume 9, 2019
System Science: Application to Space Weather Analysis, Modelling, and Forecasting
Article Number A12
Number of page(s) 15
Published online 07 May 2019
  • Andriyas T, Andriyas S. 2017. Use of multivariate relevance vector machines in forecasting multiple geomagnetic indices. J Atmos Sol-Terr Phys 154: 21–32. [CrossRef] [Google Scholar]
  • Bhaskar A, Vichare G. 2013. Characteristics of penetration electric fields to the equatorial ionosphere during southward and northward IMF turnings. J Geophys Res Space Phys 118(7): 4696–4709. [CrossRef] [Google Scholar]
  • Boynton R, Balikhin M, Billings S, Sharma A, Amariutei O. 2011. Data derived NARMAX Dst model. Ann Geophys 29: 965–971. European Geosciences Union. [CrossRef] [Google Scholar]
  • Burton R, McPherron R, Russell C. 1975. An empirical relationship between interplanetary conditions and Dst. J Geophys Res 80(31): 4204–4214. [Google Scholar]
  • Cai L, Ma S, Cai H, Zhou Y, Liu R. 2009. Prediction of SYM-H index by NARX neural network from IMF and solar wind data. Sci China Ser E Technol Sci 52(10): 2877–2885. [CrossRef] [Google Scholar]
  • Cameron T, Jackel B. 2016. Quantitative evaluation of solar wind time-shifting methods. Space Weather 14(11): 973–981. [CrossRef] [Google Scholar]
  • Camporeale E, Wing S, Johnson J, Jackman C, McGranaghan R. 2018. Space weather in the machine learning era: A multidisciplinary approach. Space Weather 16(1): 2–4. [CrossRef] [Google Scholar]
  • Chandorkar M, Camporeale E, Wing S. 2017. Probabilistic forecasting of the disturbance storm time index: An autoregressive Gaussian process approach. Space Weather 15(8): 1004–1019. [CrossRef] [Google Scholar]
  • Clauer CR, McPherron RL. 1980. The relative importance of the interplanetary electric field and magneto- spheric substorms on partial ring current development. J Geophys Res Space Phys (1978–2012) 85(A12): 6747–6759. [CrossRef] [Google Scholar]
  • Daglis IA, Thorne RM, Baumjohann W, Orsini S. 1999. The terrestrial ring current: Origin, formation, and decay. Rev Geophys 37(4): 407–438. DOI: 10.1029/1999RG900009. [Google Scholar]
  • Eastwood J, Nakamura R, Turc L, Mejnertsen L, Hesse M. 2017. The scientific foundations of forecasting magnetospheric space weather. Space Sci Rev 212(3–4): 1221–1252. [CrossRef] [Google Scholar]
  • Gardner M, Dorling S. 1998. Artificial neural networks (the multilayer perceptron) a review of applications in the atmospheric sciences. Atmos Environ 32(14): 2627–2636. [CrossRef] [Google Scholar]
  • Gholipour A, Lucas C, Araabi BN. 2004. Black box modeling of magnetospheric dynamics to forecast geomagnetic activity. Space Weather 2(7): 1–7. [CrossRef] [Google Scholar]
  • Gleisner H, Lundstedt H. 1997. Response of the auroral electrojets to the solar wind modeled with neural networks. J Geophys Res 102: 14. [CrossRef] [Google Scholar]
  • Gleisner H, Lundstedt H, Wintoft P. 1996. Predicting geomagnetic storms from solar-wind data using time-delay neural networks. Ann Geophys 14: 679–686. [CrossRef] [Google Scholar]
  • Gonzalez W, Joselyn J, Kamide Y, Kroehl H, Rostoker G, Tsurutani B, Vasyliunas V. 1994. What is a geomagnetic storm? J Geophys Res Space Phys (1978–2012) 99(A4): 5771–5792. [NASA ADS] [CrossRef] [Google Scholar]
  • Haykin S, Network N. 2004. A comprehensive foundation. Neural Netw 2 (2004): 41. [Google Scholar]
  • Hérault J, Jutten C. 1994. Réseaux euronaux et traitement du signal, Hermes, Paris. [Google Scholar]
  • Huttunen K, Koskinen H, Karinen A, Mursula K. 2006. Asymmetric development of magnetospheric storms during magnetic clouds and sheath regions. Geophys Res Lett 33(6): L06107. [CrossRef] [Google Scholar]
  • Iyemori T, Maeda H. 1980. Prediction of geomagnetic activities from solar wind parameters based on the linear prediction theory. Sol-Terr Predict Proc 4: A-1–A-7. [Google Scholar]
  • Iyemori T, Rao D. 1996. Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to storm-substorm relation. Ann Geophys 14: 608–618. [CrossRef] [Google Scholar]
  • Jordanova V, Boonsiriseth A, Thorne R, Dotan Y. 2003. Ring current asymmetry from global simulations using a high-resolution electric field model. J Geophys Res Space Phys 108(A12): 1443. [CrossRef] [Google Scholar]
  • Kamide Y, Slavin JA. 1986. Solar wind-magnetosphere couplingINIS 18: 13. [Google Scholar]
  • Kugblenu S, Taguchi S, Okuzawa T. 1999. Prediction of the geomagnetic storm associated Dst index using an artificial neural network algorithm. Earth Planet Space 51(4): 307–313. [CrossRef] [Google Scholar]
  • Lazzús J, Vega P, Rojas P, Salfate I. 2017. Forecasting the Dst index using a swarm-optimized neural network. Space Weather 15(8): 1068–1089. [CrossRef] [Google Scholar]
  • Liemohn M, Kozyra J, Thomsen M, Roeder J, Lu G, Borovsky J, Cayton T. 2001. Dominant role of the asymmetric ring current in producing the storm time Dst*. J Geophys Res Space Phys 106(A6): 10883–10904. [CrossRef] [Google Scholar]
  • Lippmann RP. 1987. An introduction to computing with neural nets. ASSP Mag IEEE 4(2): 4–22. [CrossRef] [Google Scholar]
  • Lundstedt H, Wintoft P. 1994. Prediction of geomagnetic storms from solar wind data with the use of a neural network. Ann Geophys 12: 19–24. Springer. [CrossRef] [Google Scholar]
  • Miller A. 1993. A review of neural network applications in Astronomy. Vistas Astron 36: 141–161. [CrossRef] [Google Scholar]
  • Munsami V. 2000. Determination of the effects of substorms on the storm-time ring current using neural networks. J Geophys Res 105(A12): 27833–27840. [CrossRef] [Google Scholar]
  • Newell P, Gjerloev J. 2012. SuperMAG-based partial ring current indices. J Geophys Res Space Phys 117(A5): 5215. [Google Scholar]
  • O’Brien TP, McPherron RL. 2000. Forecasting the ring current index Dst in real time. J Atmos Sol-Terr Phys 62(14): 1295–1299. [Google Scholar]
  • Ohtani S-I. 2000. Magnetospheric current systems, vol. 118, American Geophysical Union, Washington, USA. [CrossRef] [Google Scholar]
  • Oliveira DM, Samsonov AA. 2018. Geoeffectiveness of interplanetary shocks controlled by impact angles: A review. Adv Space Res 61(1): 1–44. [Google Scholar]
  • Podladchikova T, Petrukovich A, Yermolaev Y. 2018. Geomagnetic storm forecasting service StormFocus: years online. J Space Weather Space Clim 8: A22. [CrossRef] [Google Scholar]
  • Poulton MM. 2002. Neural networks as an intelligence amplification tool: A review of applications. Geophysics 67(3): 979–993. [CrossRef] [Google Scholar]
  • Rangarajan G. 1989. Indices of geomagnetic activity. Geomagnetism 3: 323–384. [Google Scholar]
  • Rastätter L, Kuznetsova M, Glocer A, Welling D, Meng X, et al. 2013. Geospace environment modeling 2008–2009 challenge: Dst index. Space Weather 11(4): 187–205. [CrossRef] [Google Scholar]
  • Revallo M, Valach F, Hejda P, Bochníček J. 2014. A neural network Dst index model driven by input time histories of the solar wind-magnetosphere interaction. J Atmos Sol-Terr Phys 110: 9–14. [Google Scholar]
  • Revallo M, Valach F, Hejda P, Bochníček J. 2015. Modeling of CME and CIR driven geomagnetic storms by means of artificial neural networks. Contrib Geophys Geod 45(1): 53–65. [CrossRef] [Google Scholar]
  • Rumelhart DE, Hinton GE, Williams RJ. 1985. Learning internal representations by error propagation, No. ICS-8506. California Univ San Diego La Jolla Inst for Cognitive Science. [CrossRef] [Google Scholar]
  • Singh AK, Sinha A, Pathan B, Rawat R. 2012. Solar flare effect on low latitude asymmetric indices. J Atmos Sol-Terr Phys 77: 119–124. [CrossRef] [Google Scholar]
  • Singh AK, Sinha A, Pathan B, Rajaram R, Rawat R. 2013. Effect of prompt penetration on the low latitude ASY indices. J Atmos Sol-Terr Phys 94: 34–40. [CrossRef] [Google Scholar]
  • Siscoe G, Love J, Gannon J. 2012. Problem of the Love-Gannon relation between the asymmetric disturbance field and Dst. J Geophys Res Space Phys 117(A9): A09216. [CrossRef] [Google Scholar]
  • Sugiura M. 1964. Hourly values of equatorial Dst for the IGY. Ann Int Geophys Yr 35: 24. [Google Scholar]
  • Tsurutani BT, Gonzalez WD. 2013. The Interplanetary Causes of Magnetic Storms: A Review. In Magnetic Storms, Tsurutani BT, Gonzalez WD, Kamide Y, Arballo JK (eds). DOI: 10.1029/GM098p0077. [Google Scholar]
  • Unnikrishnan K. 2012. Prediction of magnetic substorms using a state space model. J Atmos Sol-Terr Phys 75: 22–30. [CrossRef] [Google Scholar]
  • Unnikrishnan K. 2014. Prediction of horizontal component of earth’s magnetic field over Indian sector using neural network model. J Atmos Sol-Terr Phys 121: 206–220. [CrossRef] [Google Scholar]
  • Uwamahoro J, Habarulema JB. 2014. Empirical modeling of the storm time geomagnetic indices: A comparison between the local K and global Kp indices. Earth Planet Space 66(1): 1–8. [CrossRef] [Google Scholar]
  • Vichare G, Alex S, Lakhina GS. 2005. Some characteristics of intense geomagnetic storms and their energy budget. J Geophys Res Space Phys 110(A3). DOI: 10.1029/2004JA010418. [Google Scholar]
  • Vichare G, Rawat R, Bhaskar A, Pathan BM. 2014. Ionospheric current contribution to the main impulse of a negative sudden impulse. Earth Planet Space 66(1): 1–21. [CrossRef] [Google Scholar]
  • Vichare G, et al. 2019. Spatial gradients in geomagnetic storm time currents observed by Swarm Multi-Spacecraft Mission. J Geophys Res Space Phys. [Google Scholar]
  • Wanliss JA, Showalter KM. 2006. High-resolution global storm index: Dst versus SYM-H. J Geophys Res Space Phys (1978–2012) 111(A2). [Google Scholar]
  • Wei H, Billings S, Balikhin M. 2004. Prediction of the Dst index using multiresolution wavelet models. J Geophys Res Space Phys 109(A7): A07212. [Google Scholar]
  • Weigel R, Horton W, Tajima T, Detman T. 1999. Forecasting auroral electrojet activity from solar wind input with neural networks. Geophys Res Lett 26(10): 1353–1356. [CrossRef] [Google Scholar]
  • Williscroft L-A, Poole AW. 1996. Neural networks, foF2, sunspot number and magnetic activity. Geophys Res Lett 23(24): 3659–3662. [CrossRef] [Google Scholar]
  • Wintoft P, Wik M, Matzka J, Shprits Y. 2017. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values. J Space Weather Space Clim 7: A29. [CrossRef] [Google Scholar]
  • Wu J-G, Lundstedt H. 1996. Prediction of geomagnetic storms from solar wind data using Elman recurrent neural networks. Geophys Res Lett 23(4): 319–322. [CrossRef] [Google Scholar]
  • Wu J-G, Lundstedt H. 1997. Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks. J Geophys Res Space Phys (1978–2012) 102(A7): 14255–14268. [CrossRef] [Google Scholar]
  • Wu J-G, Lundstedt H, Wintoft P, Detman T. 1998. Neural network models predicting the magnetospheric response to the 1997 January Halo-CME event. Geophys Res Lett 25(15): 3031–3034. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.