Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

One‐Day Forecasting of Global TEC Using a Novel Deep Learning Model

Sujin Lee, Eun‐Young Ji, Yong‐Jae Moon and Eunsu Park
Space Weather 19 (1) (2021)
DOI: 10.1029/2020SW002600
See this article

GIMLi: Global Ionospheric total electron content model based on machine learning

Aleksei V. Zhukov, Yury V. Yasyukevich and Aleksei E. Bykov
GPS Solutions 25 (1) (2021)
DOI: 10.1007/s10291-020-01055-1
See this article

Pathorn Chimsuwan, Pornchai Supnithi, Watid Phakphisut and Lin Min Min Myint
276 (2021)
DOI: 10.1109/ECTI-CON51831.2021.9454881
See this article

A novel hybrid Machine learning model to forecast ionospheric TEC over Low-latitude GNSS stations

G. Sivavaraprasad, I. Lakshmi Mallika, K. Sivakrishna and D. Venkata Ratnam
Advances in Space Research 69 (3) 1366 (2022)
DOI: 10.1016/j.asr.2021.11.033
See this article

Modeling of precipitable water vapor from GPS observations using machine learning and tomography methods

Mir-Reza Ghaffari Razin and Behzad Voosoghi
Advances in Space Research 69 (7) 2671 (2022)
DOI: 10.1016/j.asr.2022.01.003
See this article

Generation of Proxy GIM‐TEC for Extreme Storms Before the Era of GNSS Observations

Tamara Gulyaeva, Valentin Shubin, Haris Haralambous, Manuel Hernández‐Pajares and Iwona Stanislawska
Journal of Geophysical Research: Space Physics 127 (1) (2022)
DOI: 10.1029/2021JA029846
See this article

Prediction of TEC using NavIC/GPS data with geostatistical method/forecasting capability comparison with other models

R. Mukesh, V. Karthikeyan, P. Soma and P. Sindhu
Astrophysics and Space Science 365 (9) (2020)
DOI: 10.1007/s10509-020-03868-5
See this article

Space Weather Services for Civil Aviation—Challenges and Solutions

Kirsti Kauristie, Jesse Andries, Peter Beck, Jens Berdermann, David Berghmans, Claudio Cesaroni, Erwin De Donder, Judith de Patoul, Mark Dierckxsens, Eelco Doornbos, Mark Gibbs, Krista Hammond, Haris Haralambous, Ari-Matti Harri, Edmund Henley, Martin Kriegel, Tiera Laitinen, Marcin Latocha, Yana Maneva, Loredana Perrone, Emanuele Pica, Luciano Rodriguez, Vincenzo Romano, Dario Sabbagh, Luca Spogli, Iwona Stanislawska, Lukasz Tomasik, Mpho Tshisaphungo, Kasper van Dam, Bert van den Oord, Petra Vanlommel, Tobias Verhulst, Volker Wilken, Andriy Zalizovski and Kari Österberg
Remote Sensing 13 (18) 3685 (2021)
DOI: 10.3390/rs13183685
See this article

Prediction of Ionospheric TEC Based on the NARX Neural Network

Liu Guoyan, Gao Wang, Zhang Zhengxie, Zhao Qing and Chao Hu
Mathematical Problems in Engineering 2021 1 (2021)
DOI: 10.1155/2021/7188771
See this article

A Neural Network-Based TEC Model Capable of Reproducing Nighttime Winter Anomaly

Marjolijn Adolfs and Mohammed Mainul Hoque
Remote Sensing 13 (22) 4559 (2021)
DOI: 10.3390/rs13224559
See this article

Predicting the Effects of Solar Storms on the Ionosphere Based on a Comparison of Real-Time Solar Wind Data with the Best-Fitting Historical Storm Event

Erik Schmölter and Jens Berdermann
Atmosphere 12 (12) 1684 (2021)
DOI: 10.3390/atmos12121684
See this article

One Day Ahead Prediction of Global TEC Using Pix2pixhd

Ding Yang, Qingfeng Li, Hanxian Fang and Zhendi Liu
Advances in Space Research (2022)
DOI: 10.1016/j.asr.2022.03.038
See this article

Space Weather research in the Digital Age and across the full data lifecycle: Introduction to the Topical Issue

Ryan M. McGranaghan, Enrico Camporeale, Manolis Georgoulis and Anastasios Anastasiadis
Journal of Space Weather and Space Climate 11 50 (2021)
DOI: 10.1051/swsc/2021037
See this article