Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space Weather research in the Digital Age and across the full data lifecycle
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/swsc/2020013 | |
Published online | 31 March 2020 |
- Albanese C, Rodriguez F, Ronchini R, Di Rollo S, Berrilli F, Cristaldi A, Spogli L. 2017. The Ionosphere Prediction Service. Proc Int Astron Union 13(S335): 352–354. https://doi.org/10.1017/S174392131800025X. [CrossRef] [Google Scholar]
- Araghinejad S. 2013. Data-driven modeling: using MATLAB® in water resources and environmental engineering, vol. 67>, Springer Science & Business Media, Netherlands. https://doi.org/10.1007/978-94-007-7506-0. [Google Scholar]
- Azpilicueta F, Brunini C. 2009. Analysis of the bias between TOPEX and GPS vTEC determinations. J Geod 83(2): 121–127. https://doi.org/10.1007/s00190-008-0244-7. [CrossRef] [Google Scholar]
- Badeke R, Borries C, Hoque MM, Minkwitz D. 2018. Empirical forecast of quiet time ionospheric Total Electron Content maps over Europe. Adv Space Res 61(12): 2881–2890. https://doi.org/10.1016/j.asr.2018.04.010. [CrossRef] [Google Scholar]
- Bilitza D. 2001. International Reference Ionosphere 2000. Radio Sci 36>: 261–275. https://doi.org/10.1029/2000RS002432. [CrossRef] [Google Scholar]
- Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X. 2017. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 15>: 418–429. https://doi.org/10.1002/2016SW001593. [CrossRef] [Google Scholar]
- Cander LR, Zolesi B. 2014. Ionospheric prediction and forecasting, Springer, Heidelberg, p. 240. https://doi.org/10.1007/978-3-642-38430-1. [Google Scholar]
- Cander LR, Milosavljevic MM, Stankovic SS, Tomasevic S. 1998. Ionospheric forecasting technique by artificial neural network. Electron Lett 34(16): 1573–1574. https://doi.org/10.1049/el:19981113. [CrossRef] [Google Scholar]
- Cesaroni C, Alfonsi L, Romero R, Linty N, Dovis F, Veettil SV, Perez RO. 2015. Monitoring ionosphere over South America: The MImOSA and MImOSA2 projects. In: 2015 International Association of Institutes of Navigation World Congress (IAIN), IEEE. pp. 1–7. https://doi.org/10.1109/IAIN.2015.7352226. [Google Scholar]
- Cherrier N, Castaings T, Boulch A. 2017. Deep sequence-to-sequence neural networks for ionospheric activity map prediction. In: Neural Information Processing. ICONIP 2017, vol 10638>, Liu D, Xie S, Li Y, Zhao D, El-Alfy ES (Eds.), Lecture Notes in Computer Science, Springer, Cham. https://doi.org/10.1007/978-3-319-70139-4_55. [Google Scholar]
- Codrescu MV, Negrea C, Fedrizzi M, Fuller-Rowell TJ, Dobin A, Jakowsky N, Khalsa H, Matsuo T, Maruyama N. 2012. A real-time run of the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model. Space Weather 10>: S02001. https://doi.org/10.1029/2011SW000736. [CrossRef] [Google Scholar]
- Fuller-Rowell TJ, Rees D. 1980. A three-dimensional time-dependent global model of the thermosphere. J Atmos Sci 37(11): 2545–2567. https://doi.org/10.1175/1520-0469. [CrossRef] [Google Scholar]
- Galkin IA, Reinisch BW, Huang X, Bilitza D. 2012. Assimilation of GIRO data into a real-time IRI. Radio Sci 47>: RS0L07. https://doi.org/10.1029/2011RS004952. [CrossRef] [Google Scholar]
- García-Rigo A, Monte E, Hernández-Pajares M, Juan JM, Sanz J, Aragón-Angel A, Salazar D. 2011. Global prediction of the vertical total electron content of the ionosphere based on GPS data. Radio Sci 46>: RS0D25. https://doi.org/10.1029/2010RS004643. [Google Scholar]
- Habarulema JB, McKinnell L-A, Opperman BDL. 2011. Regional GPS TEC modeling: Attempted spatial and temporal extrapolation of TEC using neural networks. J Geophys Res 116>: A04314. https://doi.org/10.1029/2010JA016269. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Roma-Dollase D, Krankowski A, Ghoddousi-Fard R, Yuan Y, Li Z, Zhang H, Shi C, Feltens J, Komjathy A, Vergados P, Schaer S, Garcia-Rigo A, Gmez-Cama JM. 2016. Comparing performances of seven different global VTEC ionospheric models in the IGS context. In: IGS Workshop, Feb 8–12, 2016, Sydney, Australia, International GNSS Service (IGS), pp. 1–31. http://hdl.handle.net/2117/103688. [Google Scholar]
- Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Krankowski A. 2009. The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4): 263–275. https://doi.org/10.1007/s00190-008-0266-1. [NASA ADS] [CrossRef] [Google Scholar]
- Hernández-Pajares M, Roma-Dollase D, Krankowski A, Garcia-Rigo A, Orus-Perez R. 2017. Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geod 91(12): 1405–1414. https://doi.org/10.1007/s00190-017-1032-z. [CrossRef] [Google Scholar]
- Ho CM, Wilson BD, Mannucci AJ, Lindqwister UJ, Yuan DN. 1995. A comparative study of ionospheric total electron content measurements using global ionospheric maps of GPS, TOPEX radar, and the Bent model. Radio Sci 32>: 1499–1512. https://doi.org/10.1029/97RS00580. [Google Scholar]
- Huang Z, Yuan H. 2014. Ionospheric single-station TEC short-term forecast using RBF neural network. Radio Sci 49>: 283–292. https://doi.org/10.1002/2013RS005247. [CrossRef] [Google Scholar]
- Jakowski N, Hoque MM, Mayer C. 2011. A new global TEC model for estimating transionospheric radio wave propagation errors. J Geod 85>: 965–974. https://doi.org/10.1007/s00190-011-0455-1. [Google Scholar]
- Liemohn MW, McCollough JP, Jordanova VK, Ngwira CM, Morley SK, Cid C, Bingham S. 2018. Model evaluation guidelines for geomagnetic index predictions. Space Weather 16(12): 2079–2102. [CrossRef] [Google Scholar]
- Linty N, Minetto A, Dovis F, Spogli L. 2018. Effects of phase scintillation on the GNSS positioning error during the September 2017 storm at Svalbard. Space Weather 16(9): 1317–1329. https://doi.org/10.1029/2018SW001940. [CrossRef] [Google Scholar]
- Madsen K, Nielsen HB, Tingleff O. 1999. Methods for non-linear least squares problems, Technical University of Denmark, Kongens Lyngby. [Google Scholar]
- Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF. 1998. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3): 565–582. https://doi.org/10.1029/97RS02707. [Google Scholar]
- McGranaghan RM, Mannucci AJ, Wilson BD, Mattmann CA, Chadwick R. 2018. New capabilities for prediction of high-latitude ionospheric scintillation: A novel approach with machine learning. Space Weather 16>: 1817–1846. https://doi.org/10.1029/2018SW002018. [CrossRef] [Google Scholar]
- Migoya-Orué Y, Folarin-Olufunmilayo O, Radicella S, Alazo-Cuartas K, Rabiu AB. 2017. Evaluation of NeQuick as a model to characterize the equatorial ionization anomaly over Africa using data ingestion. Adv Space Res 60(8): 1732–1738. https://doi.org/10.1016/j.asr.2017.01.013. [CrossRef] [Google Scholar]
- Nava B, Coisson P, Radicella SM. 2008. A new version of the NeQuick ionosphere electron density model. J Atmos Sol Terr Phys 70>: 1856–1862. https://doi.org/10.1016/j.jastp.2008.01.015. [CrossRef] [Google Scholar]
- Nava B, Radicella SM, Azpilicueta F. 2011. Data ingestion into NeQuick 2. Radio Sci 46>: RS0D17. https://doi.org/10.1029/2010RS004635. [CrossRef] [Google Scholar]
- Nava B, Radicella SM, Leitinger R, Coïsson P. 2006. A near-real-time model – assisted ionosphere electron density retrieval method. Radio Sci 41>: RS6S16. https://doi.org/10.1029/2005RS003386. [CrossRef] [Google Scholar]
- Nava B, Rodríguez-Zuluaga J, Alazo-Cuartas K, Kashcheyev A, Migoya-Orué Y, Radicella SM, Fleury R. 2016. Middle-and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J Geophys Res Space Phys 121(4): 3421–3438. https://doi.org/10.1002/2015JA022299. [CrossRef] [Google Scholar]
- Nie F, Hu Z, Li X. 2018. An investigation for loss functions widely used in machine learning. Commun Inf Syst 18(1): 37–52. [Google Scholar]
- Nørgård PM, Ravn O, Poulsen NK, Hansen LK. 2000. Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook. Springer-Verlag, Berlin, Heidelberg, pp. 258. [Google Scholar]
- Olwendo OJ, Cesaroni C. 2016. Validation of NeQuick 2 model over the Kenyan region through data ingestion and the model application in ionospheric studies. J Atmos Sol Terr Phys 145>: 143–153. https://doi.org/10.1016/j.jastp.2016.04.011. [CrossRef] [Google Scholar]
- Olwendo OJ, Cesaroni C, Yamazaki Y, Cilliers P. 2017. Equatorial ionospheric disturbances over the East African sector during the 2015 St. Patrick’s day storm. Adv Space Res 60(8): 1817–1826. https://doi.org/10.1016/j.asr.2017.06.037. [CrossRef] [Google Scholar]
- Qian L, Wang W, Burns AG, Chamberlin PC, Coster A, Zhang SR, Solomon SC. 2019. Solar flare and geomagnetic storm effects on the thermosphere and ionosphere during 6–11 September 2017. J Geophys Res Space Phys 124>: 2298–2311. https://doi.org/10.1029/2018JA026175. [CrossRef] [Google Scholar]
- Park J, Sreeja V, Aquino M, Cesaroni C, Spogli L, Dodson A, De Franceschi G. 2016. Performance of ionospheric maps in support of long baseline GNSS kinematic positioning at low latitudes. Radio Sci 51(5): 429–442. https://doi.org/10.1002/2015RS005933. [CrossRef] [Google Scholar]
- Perez RO. 2019. Using TensorFlow-based Neural Network to estimate GNSS single frequency ionospheric delay (IONONet). Adv Space Res 63(5): 1607–1618. [CrossRef] [Google Scholar]
- Piersanti M, Alberti T, Bemporad A, Berrilli F, Bruno R, Capparelli V, Del Corpo A. 2017. Comprehensive analysis of the geoeffective solar event of 21 June 2015: Effects on the magnetosphere, plasmasphere, and ionosphere systems. Sol Phys 292(11): 169. https://doi.org/10.1007/s11207-017-1186-0. [CrossRef] [Google Scholar]
- Radicella SM, Leitinger R. 2001. The evolution of the DGR approach to model electron density profiles. Adv Space Res 27>: 35–40. https://doi.org/10.1016/S0273-1177(00)00138-1. [CrossRef] [Google Scholar]
- Ren X, Chen J, Li X, Zhang X, Freeshah M. 2019. Performance evaluation of real-time global ionospheric maps provided by different IGS analysis centers. GPS Solu 23(4): 113. https://doi.org/10.1007/s10291-019-0904-5. [CrossRef] [Google Scholar]
- Rodriguez F, Ronchini R, Di Rollo S, De Franceschi G, Cesaroni C, et al. 2018. The Ionosphere Prediction Service Project. In EGU General Assembly Conference Abstracts, vol. 20>, p. 15908. https://doi.org/10.31701/itsnt2018.25. [Google Scholar]
- Roma-Dollase D, Hernández-Pajares M, Krankowski A, et al. 2018. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J Geod 92>: 691. https://doi.org/10.1007/s00190-017-1088-9. [CrossRef] [Google Scholar]
- Sai Gowtam V, Tulasi Ram S. 2017. An Artificial Neural Network based Ionospheric Model to predict NmF2 and hmF2 using long-term data set of FORMOSAT-3/COSMIC radio occultation observations: Preliminary results. J Geophys Res Space Phys 122>: 11743–11755. https://doi.org/10.1002/2017JA024795. [CrossRef] [Google Scholar]
- Schaer S, Gurtner W, Feltens J. 1998. IONEX: The ionosphere map exchange format version 1. In Proceedings of the IGS AC workshop, Darmstadt, Germany, Vol. 9>, No. 11. [Google Scholar]
- Schelter S, Biessmann F, Januschowski T, Salinas D, Seufert S, Szarvas G, Deshpande A. 2018. On challenges in machine learning model management. IEEE Data Eng Bull 41(4): 5–15. [Google Scholar]
- Sexton ES, Nykyri K, Ma X. 2019. Kp forecasting with a recurrent neural network. J Space Weather Space Clim 9>: A19. [CrossRef] [Google Scholar]
- Spogli L, Cesaroni C, Di Mauro D, Pezzopane M, Alfonsi L, Musicò E, Linty N. 2016. Formation of ionospheric irregularities over Southeast Asia during the 2015 St. Patrick’s Day storm. J Geophys Res Space Phys 121(12): https://doi.org/10.1002/2016JA023222. [Google Scholar]
- Tulunay E, Senalp ET, Radicella SM, Tulunay Y. 2006. Forecasting total electron content maps by neural network technique. Radio Sci 41>: RS4016. https://doi.org/10.1029/2005RS003285. [CrossRef] [Google Scholar]
- Veettil SV, Cesaroni C, Aquino M, De Franceschi G, Berrili F, Rodriguez F, Ronchini R. 2019. The ionosphere prediction service prototype for GNSS users. J Space Weather Space Clim 9>: A41. https://doi.org/10.1051/swsc/2019038. [CrossRef] [Google Scholar]
- Xie H, Tang H, Liao YH. 2009. Time series prediction based on NARX neural networks: An advanced approach. In: 2009 International conference on machine learning and cybernetics, vol 3, IEEE. pp. 1275–1279. https://doi.org/10.1109/ICMLC.2009.5212326 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.