Issue |
J. Space Weather Space Clim.
Volume 4, 2014
Space Weather and Challenges for Modern Society
|
|
---|---|---|
Article Number | A21 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2014018 | |
Published online | 09 July 2014 |
Regular Article
Methodology for simulation of geomagnetically induced currents in power systems
Geomagnetic Laboratory, Natural Resources, Ottawa, Canada
* Corresponding author: dboteler@nrcan.gc.ca
Received:
23
April
2013
Accepted:
19
May
2014
To assess the geomagnetic hazard to power systems it is useful to be able to simulate the geomagnetically induced currents (GIC) that are produced during major geomagnetic disturbances. This paper examines the methodology used in power system analysis and shows how it can be applied to modelling GIC. Electric fields in the area of the power network are used to determine the voltage sources or equivalent current sources in the transmission lines. The power network can be described by a mesh impedance matrix which is combined with the voltage sources to calculate the GIC in each loop. Alternatively the power network can be described by a nodal admittance matrix which is combined with the sum of current sources into each node to calculate the nodal voltages which are then used to calculate the GIC in the transmission lines and GIC flowing to ground at each substation. Practical calculations can be made by superposition of results calculated separately for northward and eastward electric fields. This can be done using magnetic data from a single observatory to calculate an electric field that is a uniform approximation of the field over the area of the power system. It is also shown how the superposition of results can be extended to use data from two observatories: approximating the electric field by a linear variation between the two observatory locations. These calculations provide an efficient method for simulating the GIC that would be produced by historically significant geomagnetic storm events.
Key words: geomagnetically induced currents (GIC) / electric field / modelling / electromagnetism / methodology
© D. Boteler, Published by EDP Sciences 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.