Issue |
J. Space Weather Space Clim.
Volume 6, 2016
|
|
---|---|---|
Article Number | A17 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2016009 | |
Published online | 11 March 2016 |
Research Article
Photochemistry-emission coupled model for Europa and Ganymede
1
Royal Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, 1180
Brussels, Belgium
2
Physikalisch-Meteorologishes Observatorium Davos, World Radiation Center (PMOD/WRC), Dorfstrasse 33, 7260
Davos Dorf, Switzerland
3
UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), UMR 5274, 38041
Grenoble, France
* Corresponding author: gael.cessateur@aeronomie.be
Received:
26
May
2015
Accepted:
26
January
2016
In the frame of the JUICE mission, preliminary studies of the Jupiter’s icy moons, such as Ganymede and Europa, are mandatory. The present paper aims at characterizing the impact of the solar UV flux and its variability on their atmospheres. The solar UV radiation is responsible for the photoionization, photodissociation, and photoexcitation processes within planetary atmospheres. A 1-D photoabsorption model has been developed for different observational geometries, on the basis of a neutral atmospheric model. Considering various production and loss mechanisms but also the transport of oxygen atoms, we estimate the red and green line emissions from photo impact-induced excitation only. These dayglow emissions can represent few percent of the global airglow emission, mainly dominated by electron-induced excitation in auroral regions. For limb viewing conditions, red line emission is bright enough to be detected from actual spectrometers, from 338 R to 408 R according to the solar activity. This is also the case for the green line with 8 R at limb viewing. Considering a different neutral atmosphere model, with an O2 column density 50% more important, leads to a 14% increase in the red line emissions for limb viewing close to the surface. This difference could be important enough to infer which neutral model is the most likely. However, uncertainties on the solar UV flux might also prevent to constrain the O2 column density when using ground-based observations in the visible only. The impact of solar flares on the red line emissions for Europa has also been investigated within a planetary space weather context.
Key words: Jovian moons / Aeronomy / Airglow / UV flux / Solar activity
© G. Cessateur et al., Published by EDP Sciences 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.