Open Access
Issue |
J. Space Weather Space Clim.
Volume 6, 2016
|
|
---|---|---|
Article Number | A17 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2016009 | |
Published online | 11 March 2016 |
- Atkinson, R., D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi, and J. Troe. Evaluated kinetic and photochemical data for atmospheric chemistry: volume I – gas phase reactions of Ox. HOx, NOx and SOx species. Atmos. Chem. Phys., 4 (6), 1461–1738, 2004, DOI: 10.5194/acp-4-1461-2004. [NASA ADS] [CrossRef] [Google Scholar]
- Banks, P., and G. Kockarts. Aeronomy, Part A, Academic Press, New York, 1973, DOI: 10.1016/B978-0-12-077802-7.50002-6. [Google Scholar]
- Barthelemy, M., and G. Cessateur. Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux. J. Space Weather Space Clim., 4 (27), A35, 2014, DOI: 10.1051/swsc/2014033. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Calvin, W.M., R.N. Clark, R.H. Brown, and J.R. Spencer. Spectra of the icy Galilean satellites from 0.2 to 5 μm: a compilation, new observations, and a recent summary. J. Geophys. Res., 100, 19041–19048, 1995, DOI: 10.1029/94JE03349. [CrossRef] [Google Scholar]
- Cassidy, T.A., R.E. Johnson, M.A. McGrath, M.C. Wong, and J.F. Cooper. The spatial morphology of Europa’s near-surface O2 atmosphere. Icarus, 191, 755–764, 2007, DOI: 10.1016/j.icarus.2007.04.033. [CrossRef] [Google Scholar]
- Cassidy, T.A., R.E. Johnson, P.E. Geissler, and F. Leblanc. Simulation of Na D emission near Europa during eclipse. J. Geophys. Res. [Planets], 113, E02005, 2008, DOI: 10.1029/2007JE002955. [Google Scholar]
- Cessateur, G., T. Dudok de Wit, M. Kretzschmar, J. Lilensten, J. Hochedez, and M. Snow. Monitoring the solar UV irradiance spectrum from the observation of a few passbands. A&A, 528, A68, 2011, DOI: 10.1051/0004-6361/201015903. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Cessateur, G., J. Lilensten, M. Barthélémy, T. Dudok de Wit, C. Simon Wedlund, G. Gronoff, H. Ménager, and M. Kretzschmar. Photoabsorption in Ganymede’s atmosphere. Icarus, 218, 308–319, 2012a, DOI: 10.1016/j.icarus.2011.11.025. [CrossRef] [Google Scholar]
- Cessateur, G., J. Lilensten, T. Dudok de Wit, A. BenMoussa, and M. Kretzschmar. New observation strategies for the solar UV spectral irradiance. J. Space Weather Space Clim., 2, A16, 2012b, DOI: 10.1051/swsc/2012016. [CrossRef] [EDP Sciences] [Google Scholar]
- Dudok de Wit, T., M. Kretzschmar, J. Lilensten, and T. Woods. Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett., 36, L10107, 2009, DOI: 10.1029/2009GL037825. [CrossRef] [Google Scholar]
- Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys., 13, 3945–3977, 2013, DOI: 10.5194/acp-13-3945-2013. [Google Scholar]
- Eviatar, A., D.F. Strobel, B.C. Wolven, P.D. Feldman, M.A. McGrath, and D.J. Williams. Excitation of the Ganymede ultraviolet aurora. Astrophys. J., 555, 1013–1019, 2001, DOI: 10.1086/321510. [CrossRef] [Google Scholar]
- Feldman, P.D., M.A. McGrath, D.F. Strobel, H.W. Moos, K.D. Retherford, and B.C. Wolven. HST/STIS ultraviolet imaging of polar aurora on Ganymede. Astrophys. J., 535, 1085–1090, 2000, DOI: 10.1086/308889. [Google Scholar]
- Fischer, C.F., and G. Tachiev. Breit-Pauli energy levels, lifetimes, and transition probabilities for the beryllium-like to neon-like sequences. At. Data Nucl. Data Tables, 87 (1), 1–184, 2004, DOI: 10.1016/j.adt.2004.02.001. [NASA ADS] [CrossRef] [Google Scholar]
- Florescu-Mitchell, A.I., and J.B.A. Mitchell. Dissociative recombination. Phys. Rep., 430, 277–374, 2006, DOI: 10.1016/j.physrep.2006.04.002. [NASA ADS] [CrossRef] [Google Scholar]
- Grasset, O., M.K. Dougherty, A. Coustenis, E.J. Bunce, C. Erd, et al. JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci., 78, 1–21, 2013, DOI: 10.1016/j.pss.2012.12.002. [NASA ADS] [CrossRef] [Google Scholar]
- Gronoff, G., C. Simon Wedlund, C.J. Mertens, and R.J. Lillis. Computing uncertainties in ionosphere-airglow models: I. Electron flux and species production uncertainties for Mars. J. Geophys. Res. [Space Phys.], 117, A04306, 2012, DOI: 10.1029/2011JA016930. [Google Scholar]
- Gurnett, D.A., W.S. Kurth, A. Roux, S.J. Bolton, and C.F. Kennel. Evidence for a magnetosphere at Ganymede from plasma-wave observations by the Galileo spacecraft. Nature, 384, 535–537, 1996, DOI: 10.1038/384535a0. [CrossRef] [Google Scholar]
- Hall, D.T., P.D. Feldman, M.A. McGrath, and D.F. Strobel. The far-ultraviolet oxygen airglow of Europa and Ganymede. Astrophys. J., 499, 475–481, 1998, DOI: 10.1086/305604. [Google Scholar]
- Heath, D.F., and B.M. Schlesinger. The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res., 91, 8672–8682, 1986, DOI: 10.1029/JD091iD08p08672. [NASA ADS] [CrossRef] [Google Scholar]
- Huebner, W.F., J.J. Keady, and S.P. Lyon. Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophys. Space Sci., 195, 1–289, 1992, DOI: 10.1007/BF00644558. [Google Scholar]
- Jackman, C.M., and C.S. Arridge. Solar cycle effects on the dynamics of Jupiter’s and Saturn’s magnetospheres. Sol. Phys., 274, 481–502, 2011, DOI: 10.1007/s11207-011-9748-z. [CrossRef] [Google Scholar]
- Kalogerakis, K.S., T.G. Slanger, E.A. Kendall, T.R. Pedersen, M.J. Kosch, B. Gustavsson, and M.T. Rietveld. Remote Oxygen Sensing by Ionospheric Excitation (ROSIE). Ann. Geophys., 27 (5), 2183–2189, 2009, DOI: 10.5194/angeo-27-2183-2009. [CrossRef] [Google Scholar]
- Kella, D., L. Vejby-Christensen, P. Johnson, H. Pedersen, and L. Andersen. The source of green light emission determined from a heavy-ion storage ring experiment. Science, 276, 1530–1533, 1997. [CrossRef] [Google Scholar]
- Kivelson, M.G., K.K. Khurana, C.T. Russell, R.J. Walker, J. Warnecke, F.V. Coroniti, C. Polanskey, D.J. Southwood, and G. Schubert. Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature, 384, 537–541, 1996, DOI: 10.1038/384537a0. [NASA ADS] [CrossRef] [Google Scholar]
- Kliore, A.J., D.P. Hinson, F.M. Flasar, A.F. Nagy, and T.E. Cravens. The ionosphere of Europa from Galileo radio occultations. Science, 277, 355–358, 1997, DOI: 10.1126/science.277.5324.355. [CrossRef] [PubMed] [Google Scholar]
- Lilensten, J., T. Dudok de Wit, P.-O. Amblard, J. Aboudarham, F. Auchre, and M. Kretzschmar. Recommendation for a set of solar EUV lines to be monitored for aeronomy applications. Ann. Geophys., 25 (6), 1299–1310, 2007, DOI: 10.5194/angeo-25-1299-2007. [Google Scholar]
- Lilensten, J., T. Dudok de Wit, M. Kretzschmar, P. Amblard, S. Moussaoui, J. Aboudarham, and F. Auchère. Review on the solar spectral variability in the EUV for space weather purposes. Ann. Geophys., 26, 269–279, 2008, DOI: 10.5194/angeo-26-269-2008. [NASA ADS] [CrossRef] [Google Scholar]
- Lilensten, J., A.J. Coates, V. Dehant, T. Dudok de Wit, R.B. Horne, F. Leblanc, J. Luhmann, E. Woodfield, and M. Barthélemy. What characterizes planetary space weather? Astron. Astrophys. Rev., 22, 79, 2014, DOI: 10.1007/s00159-014-0079-6. [CrossRef] [Google Scholar]
- Marconi, M.L. A kinetic model of Ganymede’s atmosphere, Icarus, 190, 155–174, 2007, DOI: 10.1016/j.icarus.2007.02.016. [NASA ADS] [CrossRef] [Google Scholar]
- McGrath, M.A., X. Jia, K. Retherford, P.D. Feldman, D.F. Strobel, and J. Saur. Aurora on Ganymede. J. Geophys. Res. [Space Phys.], 118, 2043–2054, 2013, DOI: 10.1002/jgra.50122. [Google Scholar]
- Nagy, A.F., J. Kim, T.E. Cravens, and A.J. Kliore. Hot oxygen corona at Europa. Geophys. Res. Lett., 25, 4153–4155, 1998, DOI: 10.1029/1998GL900139. [CrossRef] [Google Scholar]
- Paranicas, C., W.R. Paterson, A.F. Cheng, B.H. Mauk, R.W. McEntire, L.A. Frank, and D.J. Williams. Energetic particle observations near Ganymede. J. Geophys. Res., 104, 17459–17470, 1999, DOI: 10.1029/1999JA900199. [Google Scholar]
- Pavlov, A., N. Pavlova, and A. Drozdov. Production rate of O(1D), O(1S) and N(2D) in the subauroral red arc region. Geomag. Aeron., 39, 201205, 1999. [Google Scholar]
- Payan, A.P., C.S. Paty, and K.D. Retherford. Uncovering local magnetospheric processes governing the morphology and variability of Ganymede’s aurora using three-dimensional multifluid simulations of Ganymede’s magnetosphere. J. Geophys. Res. [Space Phys.], 120, 401–413, 2015, DOI: 10.1002/2014JA020301. [CrossRef] [Google Scholar]
- Plainaki, C., A. Milillo, A. Mura, S. Orsini, and T. Cassidy. Neutral particle release from Europa’s surface. Icarus, 210, 385–395, 2010, DOI: 10.1016/j.icarus.2010.06.041. [Google Scholar]
- Plainaki, C., A. Milillo, A. Mura, J. Saur, S. Orsini, and S. Massetti. Exospheric O2 densities at Europa during different orbital phases. Planet. Space Sci., 88, 42–52, 2013, DOI: 10.1016/j.pss.2013.08.011. [CrossRef] [Google Scholar]
- Plainaki, C., A. Milillo, S. Massetti, A. Mura, X. Jia, S. Orsini, V. Mangano, E. De Angelis, and R. Rispoli. The H2O and O2 exospheres of Ganymede: the result of a complex interaction between the Jovian magnetospheric ions and the icy moon. Icarus, 245, 306–319, 2015, DOI: 10.1016/j.icarus.2014.09.018. [NASA ADS] [CrossRef] [Google Scholar]
- Porco, C.C., R.A. West, A. McEwen, A.D. Del Genio, A.P. Ingersoll, et al. Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science, 299, 1541–1547, 2003, DOI: 10.1126/science.1079462. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Qian, L., A.G. Burns, P.C. Chamberlin, and S.C. Solomon. Flare location on the solar disk: modeling the thermosphere and ionosphere response. J. Geophys. Res. [Space Phys.], 115 (A9), A09311, 2010, DOI: 10.1029/2009JA015225. [Google Scholar]
- Rosen, S., A. Derkatch, J. Semaniak, A. Neau, A. Al-Khalili, et al. Recombination of simple molecular ions studied in storage ring: dissociative recombination of H2O+. Faraday Discussion, 115, 295–302, 2000, DOI: 10.1039/A909314A. [Google Scholar]
- Roth, L., J. Saur, K.D. Retherford, D.F. Strobel, P.D. Feldman, M.A. McGrath, and F. Nimmo. Transient water vapor at Europa’s south pole. Science, 343, 171–174, 2014, DOI: 10.1126/science.1247051. [NASA ADS] [CrossRef] [Google Scholar]
- Rottman, G. The SORCE mission. Sol. Phys., 230, 7–25, 2005, DOI: 10.1007/s11207-005-8112-6. [NASA ADS] [CrossRef] [Google Scholar]
- Saur, J., D.F. Strobel, and F.M. Neubauer. Interaction of the Jovian magnetosphere with Europa: constraints on the neutral atmosphere. J. Geophys. Res., 103, 19947–19962, 1998, DOI: 10.1029/97JE03556. [Google Scholar]
- Saur, J., S. Duling, L. Roth, X. Jia, D.F. Strobel, et al. The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals. J. Geophys. Res. [Space Phys.], 120, 1715–1737, 2015, DOI: 10.1002/2014JA020778. [CrossRef] [Google Scholar]
- Schmidt, H., R. Wegmann, W. Huebner, and D. Boice. Cometary gas and plasma flow with detailed chemistry. Comput. Phys. Commun., 49 (1), 17–59, 1988, DOI: 10.1016/0010-4655(88)90214-7. [NASA ADS] [CrossRef] [Google Scholar]
- Shematovich, V.I., R.E. Johnson, J.F. Cooper, and M.C. Wong. Surface-bounded atmosphere of Europa, Icarus, 173, 480–498, 2005, DOI: 10.1016/j.icarus.2004.08.013. [CrossRef] [Google Scholar]
- Slanger, T.G., P.C. Cosby, B.D. Sharpee, K.R. Minschwaner, and D.E. Siskind. O(1S → 1D,3P) branching ratio as measured in the terrestrial nightglow. J. Geophys. Res. [Space Phys.], 111, A12318, 2006, DOI: 10.1029/2006JA011972. [Google Scholar]
- Smyth, W.H., and M.L. Marconi. Europa’s atmosphere, gas tori, and magnetospheric implications. Icarus, 181, 510–526, 2006, DOI: 10.1016/j.icarus.2005.10.019. [CrossRef] [Google Scholar]
- Stuhl, F., and K.H. Welge. Deactivation of O(1S) and O2(b1 Σg+). Can. J. Chem., 47 (10), 1870–1877, 1969, DOI: 10.1139/v69-306. [CrossRef] [Google Scholar]
- Tapping, K.F., and B. Detracey. The origin of the 10.7 cm flux. Sol. Phys., 127, 321–332, 1990, DOI: 10.1007/BF00152171. [Google Scholar]
- Thirupathaiah, P., and V. Singh. An updated model of atomic oxygen redline dayglow emission. Adv. Space Res., 54 (6), 939–945, 2014, DOI: 10.1016/j.asr.2014.05.022. [CrossRef] [Google Scholar]
- Thuillier, G., L. Floyd, T.N. Woods, R. Cebula, E. Hilsenrath, M. Hersé, and D. Labs. Solar Irradiance Reference Spectra. In: J.M. Pap, et al., Editors. Solar Variability and its Effects on Climate. Geophysical, Vol. 141 of Washington DC American Geophysical Union Geophysical Monograph Series, 171, 2004, DOI: 10.1029/GM141. [CrossRef] [Google Scholar]
- Turc, L., L. Leclercq, F. Leblanc, R. Modolo, and J.-Y. Chaufray. Modelling Ganymede’s neutral environment: a 3D test-particle simulation. Icarus, 229, 157–169, 2014, DOI: 10.1016/j.icarus.2013.11.005. [NASA ADS] [CrossRef] [Google Scholar]
- Wiese, W.L., J.R. Fuhr, and T.M. Deters. Atomic transition probabilities of carbon, nitrogen, and oxygen: a critical data compilation. Monograph No. 7 of the Journal of Physical and Chemical Reference Data, American Chemical Society for the National Institute of Standards and Technology, Washington DC, ISBN: 1-56396-602-6, 1996. [Google Scholar]
- Witasse, O., J. Lilensten, C. Lathuillère, and P.-L. Blelly. Modeling the OI 630.0 and 557.7 nm thermospheric dayglow during EISCAT-WINDII coordinated measurements. J. Geophys. Res., 104, 24639–24656, 1999, DOI: 10.1029/1999JA900260. [NASA ADS] [CrossRef] [Google Scholar]
- Woods, T.N., F.G. Eparvier, S.M. Bailey, P.C. Chamberlin, J. Lean, G.J. Rottman, S.C. Solomon, W.K. Tobiska, and D.L. Woodraska. Solar EUV Experiment (SEE): mission overview and first results. J. Geophys. Res. [Space Phys.], 110, A01312, 2005, DOI: 10.1029/2004JA010765. [CrossRef] [Google Scholar]
- Woods, T.N., P.C. Chamberlin, W.K. Peterson, R.R. Meier, P.G. Richards, et al. XUV Photometer System (XPS): improved solar irradiance algorithm using CHIANTI spectral models. Sol. Phys., 250, 235–267, 2008. [NASA ADS] [CrossRef] [Google Scholar]
- Zipf, E.C. The collisional deactivation of metastable atoms and molecules in the upper atmosphere. Can. J. Chem., 47 (10), 1863–1870, 1969, DOI: 10.1139/v69-305. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.