Issue |
J. Space Weather Space Clim.
Volume 6, 2016
|
|
---|---|---|
Article Number | A39 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/swsc/2016034 | |
Published online | 11 November 2016 |
Research Article
DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS)
1
German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Höhe, 51147
Köln, Germany
2
Christian Albrechts Universität zu Kiel (CAU), Christian-Albrechts-Platz, 24118
Kiel, Germany
3
Institute of Nuclear Physics, Polish Academy of Sciences (IFJ), PL-31342
Krakow, Poland
4
International Atomic Energy Agency (IAEA), Division of Radiation, Transport and Waste Safety, 1400
Vienna, Austria
5
Technische Universität Wien, Atominstitut (ATI), Stadionallee 2, 1020
Vienna, Austria
6
EGB MedAustron, Marie-Curie-Straße 5, 2700
Wiener Neustadt, Austria
7
Centre for Energy Research, (MTA EK), Konkoly Thege ut 29-33, 1121
Budapest, Hungary
8
Nuclear Physics Institute of the CAS (NPI), Department of Radiation Dosimetry, Na Truhlarce 39/64, 180 00
Prague, Czech Republic
9
Belgian Nuclear Research Center (SCK·CEN), Boeretang 200, 2400
Mol, Belgium
10
NASA, Space Radiation Analysis Group (NASA/SRAG), Houston, TX
77058, USA
11
Leidos, Exploration & Mission Support, 2400 NASA Pkwy, Houston, TX
77058, USA
12
Physics Department, Oklahoma State University (OSU), Stillwater, OK
74078, USA
13
National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage, 263-8555
Chiba, Japan
l4
OHB System AG, Universitätsallee 27-29, 28359
Bremen, Germany
* Corresponding author: thomas.berger@dlr.de
Received:
26
July
2016
Accepted:
19
September
2016
The radiation environment encountered in space differs in nature from that on Earth, consisting mostly of highly energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on Earth for occupational radiation workers. Since the beginning of the space era, the radiation exposure during space missions has been monitored with various active and passive radiation instruments. Also onboard the International Space Station (ISS), a number of area monitoring devices provide data related to the spatial and temporal variation of the radiation field in and outside the ISS. The aim of the DOSIS (2009–2011) and the DOSIS 3D (2012–ongoing) experiments was and is to measure the radiation environment within the European Columbus Laboratory of the ISS. These measurements are, on the one hand, performed with passive radiation detectors mounted at 11 locations within Columbus for the determination of the spatial distribution of the radiation field parameters and, on the other, with two active radiation detectors mounted at a fixed position inside Columbus for the determination of the temporal variation of the radiation field parameters. Data measured with passive radiation detectors showed that the absorbed dose values inside the Columbus Laboratory follow a pattern, based on the local shielding configuration of the radiation detectors, with minimum dose values observed in the year 2010 of 195–270 μGy/day and maximum values observed in the year 2012 with values ranging from 260 to 360 μGy/day. The absorbed dose is modulated by (a) the variation in solar activity and (b) the changes in ISS altitude.
Key words: International Space Station / Columbus / Space radiation / DOSIS / DOSIS 3D
© T. Berger et al., Published by EDP Sciences 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.