Open Access
J. Space Weather Space Clim.
Volume 6, 2016
Article Number A39
Number of page(s) 19
Published online 11 November 2016
  • Akselrod, M.S., V.S. Kortov, D.J. Kravetsky, and V.I. Gotlib. Highly sensitive thermoluminescent anion-defective α-Al2O3:C single crystal detectors. Radiat. Prot. Dosim., 32 (1), 15–20, 1990. [Google Scholar]
  • Beaujean, R., J. Kopp, and G. Reitz. Active dosimetry on recent space flights. Radiat. Prot. Dosim., 85 (1–4), 223–226, 1999a. [CrossRef] [Google Scholar]
  • Beaujean, R., G. Reitz, and J. Kopp. Recent European measurements inside Biorack. Mutat. Res., 430 (2), 183–189, 1999b, DOI: 10.1016/S0027-5107(99)00129-3. [CrossRef] [Google Scholar]
  • Beaujean, R., J. Kopp, S. Burmeister, F. Petersen, and G. Reitz. Dosimetry inside MIR station using a silicon detector telescope (DOSTEL). Radiat. Meas., 35 (5), 433–438, 2002, DOI: 10.1016/S1350-4487(02)00074-4. [Google Scholar]
  • Berger, T. Radiation dosimetry onboard the International Space Station ISS. Z. Med. Phys., 18 (4), 265–275, 2008a, DOI: 10.1016/j.zemedi.2008.06.014. [CrossRef] [Google Scholar]
  • Berger, T., and M. Hajek. TL-efficiency – overview and experimental results over the years. Radiat. Meas., 43 (2–6), 146–156, 2008b, DOI: 10.1016/j.radmeas.2007.10.029. [CrossRef] [Google Scholar]
  • Berger, T., M. Meier, G. Reitz, and M. Schridde. Long term dose measurements applying a human anthropomorphic phantom onboard an aircraft. Radiat. Meas., 43 (2–6), 580–584, 2008, DOI: 10.1016/j.radmeas.2007.12.004. [CrossRef] [Google Scholar]
  • Berger, T., P. Bilski, M. Hajek, M. Puchalska, and G. Reitz. The MATROSHKA experiment: results and comparison from EVA (MTR-1) and IVA (MTR-2A/2B) exposure. Radiat. Res., 180 (6), 622–637, 2013, DOI: 10.1667/RR13148.1. [CrossRef] [Google Scholar]
  • Berger, T., M. Hajek, P. Bilski, and G. Reitz. Cosmic radiation exposure of biological test systems during the EXPOSE-R mission. Int. J. Astrobiol., 14 (1), 27–32, 2015, DOI: 10.1017/S1473550414000548. [CrossRef] [Google Scholar]
  • Bilski, P. Response of various LiF thermoluminescent detectors to high energy ions: results of the ICCHIBAN experiment. Nucl. Instrum. Methods B, 251 (1), 121–126, 2006, DOI: 10.1016/j.nimb.2006.05.012. [CrossRef] [Google Scholar]
  • Bilski, P., and M. Puchalska. Relative efficiency of TL detectors to energetic ion beams. Radiat. Meas., 45 (10), 1495–1498, 2010, DOI: 10.1016/j.radmeas.2010.05.013. [CrossRef] [Google Scholar]
  • Bilski, P., T. Berger, M. Hajek, and G. Reitz. Comparison of the response of various TLDs to cosmic radiation and ion beams: current results of the HAMLET project. Radiat. Meas., 46 (12), 1680–1685, 2011, DOI: 10.1016/j.radmeas.2011.03.023. [CrossRef] [Google Scholar]
  • Bilski, P., T. Berger, M. Hajek, A. Twardak, C. Koerner, and G. Reitz. Thermoluminescence fading studies: implications for long-duration space measurements in Low Earth Orbit. Radiat. Meas., 56, 303–306, 2013, DOI: 10.1016/j.radmeas.2013.01.045. [CrossRef] [Google Scholar]
  • Bilski, P., T. Berger, and D. Matthiä. Influence of cosmic radiation spectrum and its variation on the relative efficiency of LiF thermoluminescent detectors – calculations and measurements. Radiat. Meas., 88, 33–40, 2016, DOI: 10.1016/j.radmeas.2016.02.029. [CrossRef] [Google Scholar]
  • Burgkhardt, B., P. Bilski, M. Budzanowski, R. Bottger, K. Eberhardt, G. Hampel, P. Olko, and A. Straubing. Application of different TL detectors for the photon dosimetry in mixed radiation fields used for BNCT. Radiat. Prot. Dosim., 120 (1–4), 83–86, 2006, DOI: 10.1093/rpd/nci597. [CrossRef] [Google Scholar]
  • Caffrey, J.A., and D.M. Hamby. A review of instruments and methods for dosimetry in space. Adv. Space Res., 47 (4), 563–574, 2011, DOI: 10.1016/j.asr.2010.10.005. [CrossRef] [Google Scholar]
  • Durante, M., and F.A. Cucinotta. Physical basis of radiation protection in space travel. Rev. Mod. Phys., 83, 1245–1281, 2011, DOI: 10.1103/RevModPhys.83.1245. [Google Scholar]
  • EADS ASTRIUM. Columbus Payload Accommodation Handbook, COL-RIBRE-MA-0007–00. EADS Astrium, 2, 1–335, 2009. [Google Scholar]
  • Gaza, R., E.G. Yukihara, and S.W.S. McKeever. The use of optically stimulated luminescence from Al2O3:C in the dosimetry of high-energy heavy charged particle fields. Radiat. Prot. Dosim., 120 (1–4), 354–357, 2006, DOI: 10.1093/rpd/nci574. [CrossRef] [Google Scholar]
  • Guelev, M.G., I.T. Mischev, B. Burgkhardt, and E. Piesch. A two-element CaSO4:Dy dosemeter for environmental monitoring. Radiat. Prot. Dosim., 51 (1), 35–40, 1994. [Google Scholar]
  • Hajek, M., T. Berger, R. Bergmann, N. Vana, Y. Uchihori, N. Yasuda, and H. Kitamura. LET dependence of thermoluminescent efficiency and peak height ratio of CaF2:Tm. Radiat. Meas., 43 (2–6), 1135–1139, 2008, DOI: 10.1016/j.radmeas.2007.12.015. [CrossRef] [Google Scholar]
  • Kodaira, S., R.V. Tolocheck, I. Ambrozova, H. Kawashima, N. Yasuda, et al. Verification of shielding effect by the water-filled materials for space radiation in the International Space Station using passive dosimeters. Adv. Space. Res., 53, 1–7, 2014, DOI: 10.1016/j.asr.2013.10.018. [CrossRef] [Google Scholar]
  • Labrenz, J., S. Burmeister, T. Berger, B. Heber, and G. Reitz. Matroshka DOSTEL measurements onboard the International Space Station (ISS). J. Space Weather Space Clim., 5, A38, 2015, DOI: 10.1051/swsc/2015039. [Google Scholar]
  • Lishnevskii, A., M.I. Panasyuk, V.V. Benghin, V.M. Petrov, A.N. Volkov, and O.Yu. Nechaev. Variations of radiation environment on the International Space Station in 2005–2009. Cosmic Res., 50 (4), 319–323, 2012, DOI: 10.1134/S0010952512040028. [Google Scholar]
  • Matthiä, D., B. Ehresmann, H. Lohf, J. Köhler, C. Zeitlin, et al. The Martian surface radiation environment – a comparison of models and MSL/RAD measurements. J. Space Weather Space Clim., 6, A13, 2016, DOI: 10.1051/swsc/2016008. [CrossRef] [EDP Sciences] [Google Scholar]
  • Narici, L., T. Berger, D. Matthiä, and G. Reitz. Radiation measurements performed with active detectors relevant for human space exploration. Front. Oncol., 5, 273, 2015, DOI: 10.3389/fonc.2015.00273. [Google Scholar]
  • NCRP Report No. 137. Fluence-based and microdosimetric event-based methods for radiation protection in space, National Council on Radiation Protection and Measurements, Bethesda, MD, 2001. [Google Scholar]
  • Nelson, G.A. Space radiation and human exposure, a primer. Radiat. Res., 185, 349–358, 2016, DOI: 10.1667/RR14311.1. [CrossRef] [Google Scholar]
  • Pachnerová Brabcová, K., I. Ambrožová, Z. Kolísková, and A. Malušek. Uncertainties in linear energy transfer spectra measured with track-etched detectors in space. Nucl. Instrum. Methods Phys. Res. A, 713, 5–10, 2013, DOI: 10.1016/j.nima.2013.03.012. [CrossRef] [Google Scholar]
  • Pálfalvi, J.K. Fluence and dose of mixed space radiation by SSSNTDs: achievements and constraints. Radiat. Meas., 44 (9–10), 724–728, 2009, DOI: 10.1016/j.radmeas.2009.10.045. [CrossRef] [Google Scholar]
  • Puchalska, M., P. Bilski, T. Berger, M. Hajek, T. Horwacik, C. Körner, P. Olko, V. Shurshakov, and G. Reitz. NUNDO – a numerical model of a human torso phantom and its application to effective dose calculations for astronauts at the ISS. Radiat. Environ. Biophys., 53 (4), 719–727, 2014, DOI: 10.1007/s00411-014-0560-7. [CrossRef] [Google Scholar]
  • Reitz, G. Characteristic of the radiation field in low earth orbit and in deep space. Z. Med. Phys., 18 (4), 233–243, 2008, DOI: 10.1016/j.zemedi.2008.06.015. [CrossRef] [Google Scholar]
  • Reitz, G., R. Beaujean, C. Heilmann, J. Kopp, M. Leicher, and K. Strauch. Results of dosimetric measurements in space missions. Adv. Space Res., 22 (4), 495–500, 1998, DOI: 10.1016/S0027-5107(99)00129-3. [CrossRef] [Google Scholar]
  • Reitz, G., K. Strauch, R. Beaujean, J. Kopp, M. Luszik-Bhadra, and W. Heinrich. Dosimetric mapping inside BIORACK on shuttle missions STS76, STS81 and STS1984. In: E. Brinckmann, C. Varajão, M. Perry, Editors. SP1222 Biorack on Spacehab, European Space Agency, Noordwijk, Netherlands, 161–169, 1999. [Google Scholar]
  • Reitz, G., R. Beaujean, E. Benton, S. Burmeister, T. Dachev, S. Deme, M. Luszik-Bhadra, and P. Olko. Space radiation measurements on-board ISS – the DOSMAP experiment. Radiat. Prot. Dosim., 116 (1–4), 374–379, 2005, DOI: 10.1093/rpd/nci262. [Google Scholar]
  • Reitz, G., T. Berger, P. Bilski, R. Facius, M. Hajek, et al. Astronaut’s organ doses inferred from measurements in a human phantom outside the International Space Station. Radiat. Res., 171 (2), 225–235, 2009, DOI: 10.1667/RR1559.1. [Google Scholar]
  • Sawakuchi, G.O., E.G. Yukihara, S.W.S. McKeever, E.R. Benton, R. Gaza, Y. Uchihori, N. Yasuda, and H. Kitamura. Relative optically stimulated luminescence and thermoluminescence efficiencies of Al2O3:C dosimeters to heavy charged particles with energies relevant to space and radiotherapy dosimetry. J. Appl. Phys., 104, 124903, 2008, DOI: 10.1063/1.3041655. [CrossRef] [Google Scholar]
  • Spurny, F., and I. Jadrnickova. Dependence of thermoluminescent detectors relative response on the linear energy transfer; some examples of use. Radiat. Meas., 44 (2–6), 944–947, 2008, DOI: 10.1016/j.radmeas.2007.11.041. [CrossRef] [Google Scholar]
  • Straube, U., T. Berger, G. Reitz, F. Facius, C. Fuglesang, T. Reiter, V. Damann, and M. Tognini. Operational radiation protection for astronauts and cosmonauts and correlated activities of ESA medical operations. Acta Astronaut., 66, 963–973, 2010, DOI: 10.1016/j.actaastro.2009.10.004. [CrossRef] [Google Scholar]
  • Uchihori, Y., and E.R. Benton, Editors. Results from the first two intercomparison of dosimetric instruments for cosmic radiation with heavy ions beams at NIRS (ICCHIBAN-1&2) experiments. HIMAC Report 078, National Institute of Radiological Sciences, Chiba, Japan, 2004. [Google Scholar]
  • Vanhavere, F., J.L. Genicot, D. O’Sullivan, D. Zhou, and F. Spurny. Dosimetry of biological experiments in space (DOBIES) with luminescence (OSL and TL) and track etch detectors. Radiat. Meas., 43 (2–6), 694–697, 2008, DOI: 10.1016/j.radmeas.2007.12.002. [CrossRef] [Google Scholar]
  • Warren, C.S., and W.L. Gill. Radiation dosimetry aboard the spacecraft of the eight Mercury-Atlas mission (MA-8). NASA TN D-1862, U.S. Govt. Printing Office, Washington, D.C., 1964. [Google Scholar]
  • Yasuda, N., K. Namiki, Y. Honma, Y. Umeshima, Y. Marumo, H. Ishii, and E.R. Benton. Development of a high speed imaging microscope and new software for nuclear track detector analysis. Radiat. Meas., 40 (2–6), 311–315, 2005, DOI: 10.1016/j.radmeas.2005.02.013. [CrossRef] [Google Scholar]
  • Yukihara, E.G., G.O. Sawakuchi, S. Guduru, S.W.S. McKeever, R. Gaza, E.R. Benton, N. Yasuda, Y. Uchihori, and H. Kitamura. Application of Optically Stimulated Luminescence (OSL) technique in space dosimetry. Radiat. Meas., 41 (9–10), 1126–1135, 2006, DOI: 10.1016/j.radmeas.2006.05.027. [CrossRef] [Google Scholar]
  • Zeitlin, C., D. Hassler, F. Cucinotta, B. Ehresman, R. Wimmer-Schweingruber, et al. Measurements of energetic particle radiation in transit to Mars on the Mars science laboratory. Science, 340, 1080–1084, 2013, DOI: 10.1126/science.1235989. [NASA ADS] [CrossRef] [Google Scholar]
  • Zhou, D., E. Semones, R. Gaza, and M. Weyland. Radiation measured with passive dosimeters in low Earth orbit. Adv. Space Res., 40 (11), 1575–1579, 2007a, DOI: 10.1016/j.asr.2006.12.003. [CrossRef] [Google Scholar]
  • Zhou, D., E. Semones, R. Gaza, S. Johnson, N. Zapp, and M. Weyland. Radiation measured for ISS-Expedition 12 with different dosimeters. Nucl. Instrum. Methods A, 580 (3), 1283–1287, 2007b, DOI: 10.1016/j.nima.2007.06.091. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.