Issue |
J. Space Weather Space Clim.
Volume 9, 2019
|
|
---|---|---|
Article Number | A1 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2018048 | |
Published online | 09 January 2019 |
Research Article
Diminishing activity of recent solar cycles (22–24) and their impact on geospace
Indian Institute of Geomagnetism, New Panvel, Navi Mumbai, 410218, India
* Corresponding author: bkakad9@gmail.com
Received:
20
March
2018
Accepted:
26
November
2018
This study examines the variation of different energies linked with the Sun and the Earth’s magnetosphere-ionosphere systems for solar cycles (SCs) 22–24 for which the gradual decrease in the solar activity is noticed. Firstly, we investigated the variation of solar magnetic energy density (SMED) for SCs 21–24 and its relation to the solar activity. We observed distinct double peak structures in SMED for the past four SCs, 21–24. This feature is consistent with noticeable asymmetry in their two peaks. For SCs 22–24 a significant decrease is observed in the integrated SMED of each SC. This reduction is 37% from SCs 22 to 23 and 51% from SCs 23 to 24, which indicates substantial weakening of Sun’s magnetic field for SC 24. Also, the magnetic, kinetic, and thermal energy densities at the Earth’s bow-shock nose are found to be considerably low for the SC 24. We examined the solar wind Alfven speed, magnetosonic Mach number, solar wind-magnetosphere energy coupling parameter (ε), and the Chapman-Ferraro magnetopause distance (LCF) for the SCs 22–24. The estimated maximum stand-off magnetopause distance is larger for SC 24 (LCF ≤ 10.6 RE) as compared to SC 23 (LCF ≤ 10.2 RE) and SC 22 (LCF ≤ 9.8 RE). The solar wind Alfven speeds during SCs 22 and 23 are in the same range and do not exceed ≈73 km/s whereas, it is below 57 km/s for SC 24. A lower bound of solar wind magnetosonic Mach number for SC 24 is larger (M ≥ 6.9) as compared to SC 22 (M ≥ 5.9) and SC 23 (M ≥ 6). We noticed weakening in the energy coupling parameter for SC 24, which resulted in substantial (15%–38%) decrease in average strength of high latitude ionospheric (AE), low latitude magnetospheric (Dst) and equatorial ionospheric (EEJ) current systems in comparison with SC 23. Subsequently, a reduction of ≈30% is manifested in the high latitude Joule heating for SC 24. Overall this study indicates the significant step down in various energies at Sun, Earth’s bow-shock, and near Earth environment for current SC 24, which will have important implication on our Earth’s atmosphere-ionosphere-magnetosphere system.
Key words: solar cycle / magnetic fields / photosphere / magnetosphere / solar wind
© B. Kakad et al., Published by EDP Sciences 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.