Open Access
Research Article
Issue
J. Space Weather Space Clim.
Volume 9, 2019
Article Number A1
Number of page(s) 15
DOI https://doi.org/10.1051/swsc/2018048
Published online 09 January 2019
  • Ahn B-H, Akasofu S-I, Kamide Y. 1983. The Joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL. J Geophys Res Space Phys 88(A8): 6275–6287. DOI: 10.1029/JA088iA08p06275. [CrossRef] [Google Scholar]
  • Akasofu S-I. 1981. Energy coupling between the solar wind and the magnetosphere. Space Sci Rev 28(2): 121–190. DOI: 10.1007/BF00218810 [Google Scholar]
  • Baumjohann W, Kamide Y. 1984. Hemispherical Joule heating and the AE indices. J Geophys Res Space Phys 89(A1): 383–388. DOI: 10.1029/JA089iA01p00383. [CrossRef] [Google Scholar]
  • Bisoi SK, Janardhan P, Chakrabarty D, Ananthakrishnan S, Divekar A. 2014. Changes in quasi-periodic variations of solar photospheric fields: Precursor to the deep solar minimum in cycle 23? Sol Phys 289(1): 41–61. [NASA ADS] [CrossRef] [Google Scholar]
  • Blanc M, Richmond A. 1980. The ionospheric disturbance dynamo. J Geophys Res Space Phys 85(A4): 1669–1686. DOI: 10.1029/JA085iA04p01669. [Google Scholar]
  • Bose S, Nagaraju K. 2018. On the variability of the solar mean magnetic field: contributions from various magnetic features on the surface of the Sun. Astrophys J 862(1): 35, http://stacks.iop.org/0004-637X/862/i=1/a=35. [CrossRef] [Google Scholar]
  • Clette F, Lefèvre L, Cagnotti M, Cortesi S, Bulling A. 2016. The revised Brussels-Locarno sunspot number (1981–2015). Sol Phys 291(9–10): 2733–2761. [NASA ADS] [CrossRef] [Google Scholar]
  • de Toma G, Gibson S, Emery B, Arge C. 2010. The Minimum between cycle 23 and 24: Is sunspot number the whole story? In: SOHO- 23: Understanding a Peculiar Solar Minimum, vol. 428, 217, http://adsabs.harvard.edu/abs/2010ASPC.428.217D. [Google Scholar]
  • Dudok de Wit T, Bruinsma S. 2017. The 30 cm radio flux as a solar proxy for thermosphere density modelling. J Space Weather Space Clim 7: A9. DOI: 10.1051/swsc/2017008. [CrossRef] [Google Scholar]
  • Ermolli I, Matthes K, Dudok de Wit T, Krivova NA, Tourpali K, et al. 2013. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos Chem Phys 13(8): 3945–3977. DOI: 10.5194/acp-13-3945-2013, http://www.atmos-chem-phys.net/13/3945/2013/. [Google Scholar]
  • Fejer BG, de Paula ER, Gonzlez SA, Woodman RF. 1991. Average vertical and zonal F region plasma drifts over Jicamarca. J Geophys Res Space Phys 96(A8): 13901–13906. DOI: 10.1029/91JA01171. [CrossRef] [Google Scholar]
  • Feminella F, Storini M. 1997. Large-scale dynamical phenomena during solar activity cycles. Astron Astrophys 322: 311–319. [Google Scholar]
  • Georgieva K. 2011. Why the sunspot cycle is double peaked. ISRN Astron Astrophys 2011. [CrossRef] [Google Scholar]
  • Gkana A, Zachilas L. 2016. Re-evaluation of predictive models in light of new data: Sunspot number version 2.0. Sol Phys 291: 2457–2472. DOI: 10.1007/s11207-016-0965-3. [CrossRef] [Google Scholar]
  • Gnevyshev M. 1967. On the 11-years cycle of solar activity. Sol Phys 1(1): 107–120. [Google Scholar]
  • Gnevyshev M. 1977. Essential features of the 11-year solar cycle. Sol Phys 51(1): 175–183. [Google Scholar]
  • Guo J, Feng X, Emery BA, Zhang J, Xiang C, Shen F, Song W. 2011. Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions. J Geophys Res Space Phys 116(A5). [Google Scholar]
  • Hajra R, Tsurutani BT, Echer E, Gonzalez WD, Gjerloev JW. 2016. Supersubstorms (SML¡ 2500nT): Magnetic storm and solar cycle dependences. J Geophys Res Space Phys 121(8): 7805–7816, 2015JA021835. DOI: 10.1002/2015JA021835. [CrossRef] [Google Scholar]
  • Hathaway DH, Upton L. 2014. The solar meridional circulation and sunspot cycle variability. J Geophys Res Space Phys 119(5): 3316–3324. DOI: 10.1002/2013JA019432. [Google Scholar]
  • Hathaway DH, Wilson RM. 2004. What the sunspot record tells us about space climate. Sol Phys 224(1–2): 5–19. DOI: 10.1007/s11207-005-3996-8. [NASA ADS] [CrossRef] [Google Scholar]
  • Janardhan P, Bisoi SK, Gosain S. 2010. Solar polar fields during cycles 21–23: Correlation with meridional flows. Sol Phys 267(2): 267–277. [Google Scholar]
  • Janardhan P, Bisoi SK, Ananthakrishnan S, Tokumaru M, Fujiki K. 2011. The prelude to the deep minimum between solar cycles 23 and 24: Interplanetary scintillation signatures in the inner heliosphere. Geophys Res Lett 38(20). [Google Scholar]
  • Janardhan P, Bisoi SK, Ananthakrishnan S, Tokumaru M, Fujiki K, Jose L, Sridharan R. 2015a. A 20 year decline in solar photospheric magnetic fields: Inner-heliospheric signatures and possible implications. J Geophys Res Space Phys 120(7): 5306–5317. [CrossRef] [Google Scholar]
  • Janardhan P, Bisoi SK, Ananthakrishnan S, Tokumaru M, Fujiki K, Jose L, Sridharan R. 2015b. A 20 year decline in solar photospheric magnetic fields: Inner-heliospheric signatures and possible implications. J Geophys Res Space Phys 120(7): 5306–5317. DOI: 10.1002/2015JA021123. [Google Scholar]
  • Kakad B. 2011. A new method for prediction of peak sunspot number and ascent time of the solar cycle. Sol Phys 270(1): 393–406. DOI: 10.1007/s11207-011-9726-5. [CrossRef] [Google Scholar]
  • Kakad B, Gurram P, Tripura Sundari PNB, Bhattacharyya A. 2016. Structuring of intermediate scale equatorial spread F irregularities during intense geomagnetic storm of solar cycle 24. J Geophys Res Space Phys 121(7): 7001–7012, 2016JA022635. DOI: 10.1002/2016JA022635. [CrossRef] [Google Scholar]
  • Kakad B, Kakad A, Ramesh DS. 2017a. Shannon Entropy-Based Prediction of Solar Cycle 25. Sol Phys 292: 95–107. DOI: 10.1007/s11207-017-1119-y. [CrossRef] [Google Scholar]
  • Kakad B, Surve G, Tiwari P, Yadav V, Bhattacharyya A. 2017b. Disturbance dynamo effects over low-latitude F region: A study by network of VHF spaced receivers. J Geophys Res Space Phys 122(5): 5670–5686, 2016JA023498. DOI: 10.1002/2016JA023498. [CrossRef] [Google Scholar]
  • Koskinen HE, Tanskanen EI. 2002. Magnetospheric energy budget and the epsilon parameter. J Geophys Res Space Phys 107(A11). [Google Scholar]
  • Lavraud B, Borovsky JE. 2008. Altered solar wind-magnetosphere interaction at low Mach numbers: Coronal mass ejections. J Geophys Res Space Phys 113(A9), 1–25, A00B08: DOI: 10.1029/2008JA013192. [Google Scholar]
  • Le G, Cai Z, Wang H, Zhu Y. 2012. Solar cycle distribution of great geomagnetic storms. Astrophys Space Sci 339(1): 151–156. [CrossRef] [Google Scholar]
  • Le Mouel J-L, Blanter E, Shnirman M, Courtillot V. 2012. On secular changes of correlation between geomagnetic indices and variations in solar activity. J Geophys Res Space Phy 117(A9). [Google Scholar]
  • Li K, Yun H, Gu X. 2001. On long-term predictions of the maximum sunspot numbers of solar cycles 21–23. Astron Astrophys 368(1): 285–291. [Google Scholar]
  • Manoharan P. 2012. Three-dimensional evolution of solar wind during solar cycles 22–24. Astrophys J 751(2): 128. [Google Scholar]
  • McComas D, Ebert R, Elliott H, Goldstein B, Gosling J, Schwadron N, Skoug R. 2008. Weaker solar wind from the polar coronal holes and the whole Sun. Geophys Res Lett 35(18). DOI: 10.1029/2008GL034896. [CrossRef] [Google Scholar]
  • Myllys M, Kilpua E, Lavraud B, Pulkkinen T. 2016. Solar wind-magnetosphere coupling efficiency during ejecta and sheath-driven geomagnetic storms. J Geophys Res Space Phys 121(5): 4378–4396. [CrossRef] [Google Scholar]
  • Nandy D, Munoz-Jaramillo A, Martens PC. 2011. The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature 471(7336): 80. [NASA ADS] [CrossRef] [Google Scholar]
  • Nemecek Z, Safrankova J, Lopez R, Dusik S, Nouzak L, Pech L, Simnek J, Shue J-H. 2016. Solar cycle variations of magnetopause locations. Adv Space Res 58(2): 240–248. [CrossRef] [Google Scholar]
  • Newbury JA, Russell CT, Phillips JL, Gary SP. 1998. Electron temperature in the ambient solar wind: Typical properties and a lower bound at 1 AU. J Geophys Res Space Phys 103(A5): 9553–9566. DOI: 10.1029/98JA00067. [NASA ADS] [CrossRef] [Google Scholar]
  • Newell P, Sotirelis T, Liou K, Meng C-I, Rich F. 2007. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J Geophys Res Space Phys 112(A1). [Google Scholar]
  • Norton A, Gallagher J. 2010. Solar-cycle characteristics examined in separate hemispheres: Phase, Gnevyshev gap, and length of minimum. Sol Phys 261(1): 193. [Google Scholar]
  • Owens MJ, Crooker N. 2006. Coronal mass ejections and magnetic flux buildup in the heliosphere. J Geophys Res Space Phys 111(A10). [Google Scholar]
  • Perreault P, Akasofu S. 1978. A study of geomagnetic storms. Geophys J Int 54(3): 547–573. [Google Scholar]
  • Petrinec S, Song P, Russell C. 1991. Solar cycle variations in the size and shape of the magnetopause. J Geophys Res Space Phys 96(A5): 7893–7896. [CrossRef] [Google Scholar]
  • Petrovay K. 2010. Solar cycle prediction. Liv Rev Sol Phys 7(1): 6. [Google Scholar]
  • Poletto G. 2013. Sources of solar wind over the solar activity cycle. J Adv Res 4(3): 215–220. [CrossRef] [Google Scholar]
  • Pulkkinen TI, Dimmock AP, Lakka A, Osmane A, Kilpua E, Myllys M, Tanskanen EI, Viljanen A. 2016. Magnetosheath control of solar wind-magnetosphere coupling efficiency. J Geophys Res Space Phys 121(9): 8728–8739, 2016JA023011. DOI: 10.1002/2016JA023011. [CrossRef] [Google Scholar]
  • Richardson IG. 2013. Geomagnetic activity during the rising phase of solar cycle 24. J Space Weather Space Clim 3: A08. [CrossRef] [EDP Sciences] [Google Scholar]
  • Richardson IG, Cane HV. 2012. Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011). J Space Weather Space Clim 2: A02. [Google Scholar]
  • Richardson I, Cliver E, Cane H. 2000. Sources of geomagnetic activity over the solar cycle: Relative importance of coronal mass ejections, high-speed streams, and slow solar wind. J Geophys Res Space Phys 105(A8): 18203–18213. [CrossRef] [Google Scholar]
  • Schrijver CJ, Liu Y. 2008. The global solar magnetic field through a full sunspot cycle: Observations and model results. Sol Phys 252(1): 19–31. [NASA ADS] [CrossRef] [Google Scholar]
  • Selvakumaran R, Veenadhari B, Akiyama S, Pandya M, Gopalswamy N, Yashiro S, Kumar S, Mkel P, Xie H. 2016. On the reduced geoeffectiveness of solar cycle 24: A moderate storm perspective. J Geophys Res Space Phys 121(9): 8188–8202, 2016JA022885. DOI: 10.1002/2016JA022885. [Google Scholar]
  • Sibeck DG, Lopez RE, Roelof EC. 1991. Solar wind control of the magnetopause shape, location, and motion. J Geophys Res Space Phys 96(A4): 5489–5495. DOI: 10.1029/90JA02464. [CrossRef] [Google Scholar]
  • Solomon SC, Qian L, Burns AG. 2013. The anomalous ionosphere between solar cycles 23 and 24. J Geophys Res Space Phys 118(10): 6524–6535. DOI: 10.1002/jgra.50561. [Google Scholar]
  • Tsurutani BT, Gonzalez WD, Lakhina GS, Alex S. 2003. The extreme magnetic storm of 12 September 1859. J Geophys Res Space Phys 108(A7), 1–8, 1268: DOI: 10.1029/2002JA009504. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani BT, Echer E, Guarnieri FL, Gonzalez WD. 2011. The properties of two solar wind high speed streams and related geomagnetic activity during the declining phase of solar cycle 23. J Atmos Sol-Terr Phys 73(1): 164–177. [CrossRef] [Google Scholar]
  • Vichare G, Alex S, Lakhina G. 2005. Some characteristics of intense geomagnetic storms and their energy budget. J Geophys Res Space Phys 110(A3). [Google Scholar]
  • Visakh Kumar U, Varghese B, Kurian PJ. 2017. Relation between solar wind parameters, coronal mass ejections and sunspot numbers. Int J Eng Appl Sci 4(9): 2394–3661. [Google Scholar]
  • Wang Y-M, Robbrecht E, Sheeley N Jr. 2009. On the weakening of the polar magnetic fields during solar cycle 23. Astrophys J 707(2): 1372. [Google Scholar]
  • Webb DF, Howard RA. 1994. The solar cycle variation of coronal mass ejections and the solar wind mass flux. J Geophys Res Space Phys 99(A3): 4201–4220. [Google Scholar]
  • Wing S, Johnson JR, Vourlidas A. 2018. Information theoretic approach to discovering causalities in the solar cycle. Astrophys J 854(2): 85. [CrossRef] [Google Scholar]
  • Xystouris G, Sigala E, Mavromichalaki H. 2014. A complete catalogue of high-speed solar wind streams during solar cycle 23. Sol Phys 289(3): 995–1012. [CrossRef] [Google Scholar]
  • Yadav V, Kakad B, Bhattacharyya A, Pant TK. 2017. Quiet and disturbed time characteristics of blanketing Es (Esb) during solar cycle 23. J Geophys Res Space Phys 122(11): 11591–11606, 2017JA023911. DOI: 10.1002/2017JA023911. [CrossRef] [Google Scholar]
  • Yamauchi M. 2015. Decreased Sun-Earth energy-coupling efficiency starting from 2006. Earth Planet Space 67(1): 44. [CrossRef] [Google Scholar]
  • Zachilas L, Gkana A. 2015. On the verge of a grand solar minimum: A second maunder minimum? Sol Phys 290(5): 1457–1477. DOI: 10.1007/s11207-015-0684-1. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.