Issue |
J. Space Weather Space Clim.
Volume 9, 2019
|
|
---|---|---|
Article Number | A21 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2019021 | |
Published online | 21 June 2019 |
Research Article
Validating the performance of the Empirical Canadian High Arctic Ionospheric Model (E-CHAIM) with in situ observations from DMSP and CHAMP
Department of Physics, University of New Brunswick, Fredericton, NB, Canada
* Corresponding author: david.themens@gmail.com
Received:
26
November
2018
Accepted:
22
May
2019
The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM) is a new empirical model of high latitude ionospheric electron density. While the introductory studies regarding E-CHAIM include validations, E-CHAIM’s topside model was notably excluded from independent validation using datasets not included in the model fitting. In this study, we undertake such a validation using in situ electron density observations from the Defense Meteorological Satellite Program (DMSP) constellation of satellites and the Challenging Mini-satellite Payload (CHAMP) mission. Through this validation, we show that E-CHAIM generally outperforms the International Reference Ionosphere (IRI) at DMSP orbit (~830 km altitude), with RMS errors of 8.3–9.8 × 109 e/m3 versus the IRI’s 1.2–1.3 × 1010 e/m3. E-CHAIM’s improvement over the IRI is consistent at all latitudes but is particularly noted in sub-auroral regions and is mainly limited to summer and equinox periods. At CHAMP orbit, E-CHAIM and the IRI are found to perform largely comparably, with E-CHAIM outperforming the IRI only marginally with RMS errors of 7.11 × 1010 e/m3 versus the IRI’s 7.48 × 1010 e/m3. This improvement is found to be largely constrained to sub-auroral latitudes with both models performing comparably at higher latitudes. An observed tendency for the IRI to overestimate electron density in the near-peak (at CHAMP orbit) and underestimate electron density at higher altitudes (DMSP orbit) appears to be consistent with previous work, which identified this pattern to result from shortcomings in the NeQuick topside function curvature at high latitudes.
Key words: Ionosphere (auroral) / Ionosphere (polar) / Validation / Radio Sciences / Ionosphere (mid latitude)
© D.R. Themens et al., Published by EDP Sciences 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.