Open Access
J. Space Weather Space Clim.
Volume 1, Number 1, 2011
Article Number A02
Number of page(s) 15
Published online 17 August 2011
  • Araujo-Pradere, E.A., and Fuller-Rowell, T.J., STORM: An empirical storm-time ionospheric correction model, 2. Validation, Radio Sci., 37, 1071, 2002. [CrossRef] [Google Scholar]
  • Araujo-Pradere, E.A., T.J. Fuller-Rowell, and D. Bilitza, Validation of the STORM response in IRI2000, J. Geophys. Res., 108 (A3), 1120, DOI: 10.1029/2002JA009720, 2003. [CrossRef] [Google Scholar]
  • Araujo-Pradere, E.A., T.J. Fuller-Rowell, and D. Bilitza, Ionospheric variability for quiet and disturbed conditions, Adv. Space Res., 34, 1914–1921, 2004. [CrossRef] [Google Scholar]
  • Araujo-Pradere, E.A., T.J. Fuller-Rowell, and M.V. Codrescu, STORM: An empirical storm-time ionospheric correction model, 1. Model description, Radio Sci., 37, 1070, DOI: 10.1029/2001RS002447, 2002. [CrossRef] [Google Scholar]
  • Belehaki, A., L.R. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, and M. Hatzopoulos, Monitoring and forecasting the ionosphere over Europe: The DIAS project, Space Weather, 4, S12002, DOI: 10.1029/2006SW000270, 2006. [CrossRef] [Google Scholar]
  • Belehaki, A., L.R. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, and M. Hatzopoulos, Ionospheric specification and forecasting based on observations from European ionosondes participating in DIAS project, Acta Geophys., 55 (3), 398–409, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Belehaki, A., I. Stanislawska, and J. Lilensten, An overview of ionosphere-thermosphere models available for space weather purposes, Space Sci. Rev., 147 (3–4), 271–313, DOI: 10.1007/s11214-009-9510-0, 2009a. [CrossRef] [Google Scholar]
  • Belehaki, A., J. Watermann, A. Lilensten, M. Glover, M. Hapgood, M. Messerotti, R. van der Linden, and H. Lundstedt, Renewed support dawns in Europe: An action to develop space weather products and services, Space Weather – Int. J. Res.Appl., 7, art. no. S03001, 2009b. [Google Scholar]
  • Bilitza, D., International reference ionosphere 2000, Radio Sci., 36 (2), 261–276, 2001. [CrossRef] [Google Scholar]
  • Cander, L.R., Toward forecasting and mapping ionospheric space weather under the COST actions, Adv. Space Res., 31 (4), 957–964, 2003. [CrossRef] [Google Scholar]
  • Doggett, K., (ed.), Proceedings of a Workshop at Boulder, Colorado, June 19–21, 1996, NOAA/SEC, Boulder, 1996. [Google Scholar]
  • Galkin, I.A., G.M. Khmyrov, A. Kozlov, B.W. Reinisch, X. Huang, and D.F. Kitrosser,, Ionosonde networking, databasing, and Web serving, Radio Sci., 41 (5): art. no. RS5S33, 2006. [CrossRef] [Google Scholar]
  • Gonzalez, W.D., B.T. Tsurutani, and A.L.C. de Gonzalez, Interplanetary origin of geomagnetic storms, Space Sci. Rev., 88, 529–562, 1999. [Google Scholar]
  • Hesse, M., P.Bellaire, and R. Robinson, Community Coordinated Modeling Center: A new approach to space weather modeling, Proceedings of the Space Weather Workshop: Looking Towards a European Space Weather Programme, 17–19 December 2001, ESTEC, Noordwijk, The Netherlands, 2001. [Google Scholar]
  • Koutroumbas, K., and A. Belehaki, One-step ahead prediction of foF2 using time series forecasting techniques, Ann. Geophys., 23, 3035–3042, 2005. [CrossRef] [Google Scholar]
  • Koutroumbas, K., I. Tsagouri, and A. Belehaki, Time series autoregression technique implemented on-line in DIAS system for ionospheric forecast over Europe, Ann. Geophys., 26 (2), 371–386, 2008. [Google Scholar]
  • Kutiev, I., and P. Muhtarov, Modeling of midlatitude F region response to geomagnetic activity, J. Geophys. Res., 106 (A8), 15501–15509, 2001. [Google Scholar]
  • Kutiev, I., and P. Muhtarov, Empirical modeling of global ionospheric foF(2) response to geomagnetic activity, J Geophys. Res, 108 (A1): art. no. 1021, 2003. [Google Scholar]
  • McKinnell, L.A., and A.W.V. Poole, Ionospheric variability and electron density profile studies with neural networks, Adv. Space Res., 27 (1), 83–90, 2001. [CrossRef] [Google Scholar]
  • Mikhailov, A.V., V.H. Depuev, and A.H. Depueva, Short-term foF2 forecast: Present day state of art, in space weather: Research towards applications in Europe, Astrophys. Space Sci. Libr., 344, 169–184, 2007. [CrossRef] [Google Scholar]
  • Muhtarov, P., and I. Kutiev, Autocorrelation method for temporal interpolation and short-term prediction of ionospheric data, Radio Sci., 34 (2), 459–464, 1999. [CrossRef] [Google Scholar]
  • Muhtarov, P., I. Kutiev, and L.R. Cander, Geomagnetically correlated autoregression model for short-term prediction of ionopsheric parameters, Inverse Prob., 18, 49–65, 2002. [CrossRef] [Google Scholar]
  • NSWP – National Space Weather Program Implementation Plan, 2nd edition, July 2000 ( [Google Scholar]
  • Pietrella, M., and L.Perrone, A local ionospheric model for forecasting the critical frequency of the F2 layer during disturbed geomagnetic and ionospheric conditions, Ann. Geophys., 26, 323–334, 2008. [CrossRef] [Google Scholar]
  • Pittock, A.B., A critical look at long-term sun-weather relationships, Rev. Geophys., 16 (3) 400–420, 1978. [CrossRef] [Google Scholar]
  • Spence, H., D. Baker, A. Burns, T. Guild, C.-L. Huang, G. Siscoe, and R. Weigel, Center for integrated space weather modeling metrics plan and initial model validation, J. Atmos. Solar-Terr. Phys., 66/15–16, 1499, 2004. [Google Scholar]
  • Stanislawska, I., and Z. Zbyszynski, Forecasting of the ionospheric quiet and disturbed foF2 values at a single location, Radio Sci., 36 (5), 1065–1071, 2001. [CrossRef] [Google Scholar]
  • Stanislawska, I., and Z. Zbyszynski, Forecasting of the ionospheric characteristics during quiet and disturbed conditions, Ann. Geophys., 45 (1), 169–175, 2002. [Google Scholar]
  • Thacker, B.H., S.W. Doebling, F.M. Hemez, M.C. Anderson, J.E. Pepin, and E.A. Rodriquez, Concepts of model verification and validation, Technical Report, Los Alamos National Lad, Los Alamos, NM, USA, DOI: 102172/835920, 2004. [Google Scholar]
  • Tsagouri, I., and A. Belehaki, A new empirical model of middle latitude ionospheric response for space weather applications, Adv. Space Res., 37, 420–425, 2006. [Google Scholar]
  • Tsagouri, I., and A. Belehaki, An upgrade of the solar wind driven empirical model for the middle latitude ionospheric storm time response, J. Atmos. Solar-Terr. Phys., 70, 2061–2076, DOI: 10.1016/j.jastp.2008.09.010, 2008. [Google Scholar]
  • Tsagouri, I., K. Koutroumbas, and A. Belehaki, Ionospheric foF2 forecast over Europe based on an autoregressive modeling technique driven by solar wind parameters, Radio Sci., 44, RS0A35, DOI: 10.1029/2008RS004112, 2009. [CrossRef] [Google Scholar]
  • Tulunay, Y., E. Tulunay, and E.T. Senalp, The neural network technique – 1: A general exposition, Adv. Space Res., 33, 983–987, 2004a. [CrossRef] [Google Scholar]
  • Tulunay, Y., E. Tulunay, and E.T. Senalp, The neural network technique – 2: An ionospheric example illustrating its application, Adv. Space Res., 33, 988–992, 2004b. [CrossRef] [Google Scholar]
  • Vassiliadis, D., Forecasting space weather, Space Weather – Physics and Effects, Springer Praxis Books, 403–425, DOI: 10.1007/978-3-540-34578-7_14, 2007. [CrossRef] [Google Scholar]
  • Wintoft, P., and L.R. Cander, Twenty-four hour predictions of foF2 using time delay neural networks, Radio Sci., 35 (2), 395–408, 2000a. [Google Scholar]
  • Wintoft, P., and L.R. Cander, Ionospheric foF2 storm forecasting using neural networks, Phys. Chem. Earth, 25 (4) 267–273, 2000b. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.